
RdTools
Release 2.0.5+0.g2249ae5.dirty

Dec 30, 2020

Contents

1 Degradation and Soiling 3
1.1 Degradation . 4
1.2 Soiling . 5

2 Availability 7

3 Install RdTools using pip 9

4 Usage and examples 11

5 Citing RdTools 13

6 References 15

7 Documentation Contents 17
7.1 Examples . 17
7.2 API reference . 35
7.3 RdTools Change Log . 63
7.4 Developer Notes . 70

8 Indices and tables 75

Python Module Index 77

Index 79

i

ii

RdTools, Release 2.0.5+0.g2249ae5.dirty

RdTools is an open-source library to support reproducible technical analysis of time series data from photovoltaic
energy systems. The library aims to provide best practice analysis routines along with the building blocks for users
to tailor their own analyses. Current applications include the evaluation of PV production over several years to obtain
rates of performance degradation and soiling loss. They also include the capability to analyze systems for system-
and subsystem-level availability. RdTools can handle both high frequency (hourly or better) or low frequency (daily,
weekly, etc.) datasets. Best results are obtained with higher frequency data.

Full examples are worked out in the notebooks shown in Examples.

To report issues, contribute code, or suggest improvements to this documentation, visit the RdTools development
repository on github.

Contents 1

https://github.com/NREL/rdtools

RdTools, Release 2.0.5+0.g2249ae5.dirty

2 Contents

CHAPTER 1

Degradation and Soiling

Both degradation and soiling analyses are based on normalized yield, similar to performance index. Usually, this
is computed at the daily level although other aggregation periods are supported. A typical analysis of soiling and
degradation contains the following:

0. Import and preliminary calculations

1. Normalize data using a performance metric

2. Filter data that creates bias

3. Aggregate data

4. Analyze aggregated data to estimate the degradation rate and/or soiling loss

Steps 1 and 2 may be accomplished with the clearsky workflow (see the Examples) which can help eliminate problems
from irradiance sensor drift.

3

RdTools, Release 2.0.5+0.g2249ae5.dirty

1.1 Degradation

The preferred method for degradation rate estimation is the year-on-year (YOY) approach (Jordan 2018), available in
degradation.degradation_year_on_year(). The YOY calculation yields in a distribution of degradation
rates, the central tendency of which is the most representative of the true degradation. The width of the distribution
provides information about the uncertainty in the estimate via a bootstrap calculation. The Examples use the output of
degradation.degradation_year_on_year() to visualize the calculation.

4 Chapter 1. Degradation and Soiling

RdTools, Release 2.0.5+0.g2249ae5.dirty

Two workflows are available for system performance ratio calculation, and illustrated in an example notebook. The
sensor-based approach assumes that site irradiance and temperature sensors are calibrated and in good repair. Since
this is not always the case, a ’clear-sky’ workflow is provided that is based on modeled temperature and irradiance.
Note that site irradiance data is still required to identify clear-sky conditions to be analyzed. In many cases, the ’clear-
sky’ analysis can identify conditions of instrument errors or irradiance sensor drift, such as in the above analysis.

The clear-sky analysis tends to provide less stable results than sensor-based analysis when details such as filtering are
changed. We generally recommend that the clear-sky analysis be used as a check on the sensor-based results, rather
than as a stand-alone analysis.

1.2 Soiling

Soiling can be estimated with the stochastic rate and recovery (SRR) method (Deceglie 2018). This method works
well when soiling patterns follow a "sawtooth" pattern, a linear decline followed by a sharp recovery associated with
natural or manual cleaning. soiling.soiling_srr() performs the calculation and returns the P50 insolation-
weighted soiling ratio, confidence interval, and additional information (soiling_info) which includes a summary
of the soiling intervals identified, soiling_info['soiling_interval_summary']. This summary table
can, for example, be used to plot a histogram of the identified soiling rates for the dataset.

1.2. Soiling 5

RdTools, Release 2.0.5+0.g2249ae5.dirty

6 Chapter 1. Degradation and Soiling

CHAPTER 2

Availability

Evaluating system availability can be confounded by data loss from interrupted datalogger or system communications.
RdTools implements two methods (Anderson & Blumenthal 2020) of distinguishing nuisance communication inter-
ruptions from true production outages with the availability.AvailabilityAnalysis class. In addition to
classifying data outages, it estimates lost production and calculates energy-weighted system availability.

7

RdTools, Release 2.0.5+0.g2249ae5.dirty

8 Chapter 2. Availability

CHAPTER 3

Install RdTools using pip

RdTools can be installed automatically into Python from PyPI using the command line:

pip install rdtools

Alternatively it can be installed manually using the command line:

1. Download a release (Or to work with a development version, clone or download the rdtools repository).

2. Navigate to the repository: cd rdtools

3. Install via pip: pip install .

On some systems installation with pip can fail due to problems installing requirements. If this occurs, the require-
ments specified in setup.py may need to be separately installed (for example by using conda) before installing
rdtools.

For more detailed instructions, see the Developer Notes page.

RdTools currently is tested on Python 3.6+.

9

https://github.com/NREL/rdtools/releases

RdTools, Release 2.0.5+0.g2249ae5.dirty

10 Chapter 3. Install RdTools using pip

CHAPTER 4

Usage and examples

Full workflow examples are found in the notebooks in Examples. The examples are designed to work with python
3.7. For a consistent experience, we recommend installing the packages and versions documented in docs/
notebook_requirements.txt. This can be achieved in your environment by first installing RdTools as de-
scribed above, then running pip install -r docs/notebook_requirements.txt from the base direc-
tory.

The following functions are used for degradation and soiling analysis:

import rdtools

The most frequently used functions are:

normalization.normalize_with_expected_power(pv, power_expected, poa_global,
pv_input='power')

'''
Inputs: Pandas time series of raw power or energy, expected power, and

plane of array irradiance.
Outputs: Pandas time series of normalized energy and POA insolation
'''

filtering.poa_filter(poa_global); filtering.tcell_filter(temperature_cell);
filtering.clip_filter(power_ac); filtering.normalized_filter(energy_normalized);
filtering.csi_filter(poa_global_measured, poa_global_clearsky);

'''
Inputs: Pandas time series of raw data to be filtered.
Output: Boolean mask where `True` indicates acceptable data
'''

aggregation.aggregation_insol(energy_normalized, insolation, frequency='D')
'''
Inputs: Normalized energy and insolation
Output: Aggregated data, weighted by the insolation.
'''

11

RdTools, Release 2.0.5+0.g2249ae5.dirty

degradation.degradation_year_on_year(energy_normalized)
'''
Inputs: Aggregated, normalized, filtered time series data
Outputs: Tuple: `yoy_rd`: Degradation rate
`yoy_ci`: Confidence interval `yoy_info`: associated analysis data

'''

soiling.soiling_srr(energy_normalized_daily, insolation_daily)
'''
Inputs: Daily aggregated, normalized, filtered time series data for normalized

→˓performance and insolation
Outputs: Tuple: `sr`: Insolation-weighted soiling ratio
`sr_ci`: Confidence interval `soiling_info`: associated analysis data

'''

availability.AvailabilityAnalysis(power_system, power_subsystem,
energy_cumulative, power_expected)

'''
Inputs: Pandas time series system and subsystem power and energy data
Outputs: DataFrame of production loss and availability metrics
'''

12 Chapter 4. Usage and examples

CHAPTER 5

Citing RdTools

The underlying workflow of RdTools has been published in several places. If you use RdTools in a published work,
please cite the following as appropriate:

• D. Jordan, C. Deline, S. Kurtz, G. Kimball, M. Anderson, "Robust PV Degradation Methodology and Applica-
tion", IEEE Journal of Photovoltaics, 8(2) pp. 525-531, 2018

• M. G. Deceglie, L. Micheli and M. Muller, "Quantifying Soiling Loss Directly From PV Yield," in IEEE Journal
of Photovoltaics, 8(2), pp. 547-551, 2018

• K. Anderson and R. Blumenthal, "Overcoming Communications Outages in Inverter Downtime Analysis", 2020
IEEE 47th Photovoltaic Specialists Conference (PVSC)."

• RdTools, version x.x.x, https://github.com/NREL/rdtools, https://doi.org/10.5281/zenodo.1210316

– Be sure to include the version number used in your analysis!

13

https://github.com/NREL/rdtools
https://doi.org/10.5281/zenodo.1210316

RdTools, Release 2.0.5+0.g2249ae5.dirty

14 Chapter 5. Citing RdTools

CHAPTER 6

References

• The clear sky temperature calculation, clearsky_temperature.get_clearsky_tamb(), uses data
from images created by Jesse Allen, NASA’s Earth Observatory using data courtesy of the MODIS Land Group.

– https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTD_CLIM_M

– https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTN_CLIM_M

Other useful references which may also be consulted for degradation rate methodology include:

• D. C. Jordan, M. G. Deceglie, S. R. Kurtz, "PV degradation methodology comparison — A basis
for a standard", in 43rd IEEE Photovoltaic Specialists Conference, Portland, OR, USA, 2016, DOI:
10.1109/PVSC.2016.7749593.

• Jordan DC, Kurtz SR, VanSant KT, Newmiller J, Compendium of Photovoltaic Degradation Rates, Progress in
Photovoltaics: Research and Application, 2016, 24(7), 978 - 989.

• D. Jordan, S. Kurtz, PV Degradation Rates – an Analytical Review, Progress in Photovoltaics: Research and
Application, 2013, 21(1), 12 - 29.

• E. Hasselbrink, M. Anderson, Z. Defreitas, M. Mikofski, Y.-C.Shen, S. Caldwell, A. Terao, D. Kavu-
lak, Z. Campeau, D. DeGraaff, "Validation of the PVLife model using 3 million module-years of live
site data", 39th IEEE Photovoltaic Specialists Conference, Tampa, FL, USA, 2013, p. 7 – 13, DOI:
10.1109/PVSC.2013.6744087.

15

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTD_CLIM_M
https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTN_CLIM_M

RdTools, Release 2.0.5+0.g2249ae5.dirty

16 Chapter 6. References

CHAPTER 7

Documentation Contents

7.1 Examples

This page shows example usage of the RdTools analysis functions.

7.1.1 Degradation and soiling example with clearsky workflow

This jupyter notebook is intended to the RdTools analysis workflow. In addition, the notebook demonstrates
the effects of changes in the workflow. For a consistent experience, we recommend installing the specific ver-
sions of packages used to develop this notebook. This can be achieved in your environment by running pip
install -r requirements.txt followed by pip install -r docs/notebook_requirements.
txt from the base directory. (RdTools must also be separately installed.) These environments and examples are
tested with Python 3.7.

The calculations consist of several steps illustrated here:

Import and preliminary calculations

Normalize data using a performance metric

Filter data that creates bias

Aggregate data

Analyze aggregated data to estimate the degradation rate

Analyze aggregated data to estimate the soiling loss

After demonstrating these steps using sensor data, a modified version of the workflow is illustrated using modeled
clear sky irradiance and temperature. The results from the two methods are compared at the end.

This notebook works with data from the NREL PVDAQ [4] NREL x-Si #1 system. Note that because this system
does not experience significant soiling, the dataset contains a synthesized soiling signal for use in the soiling section of
the example. This notebook automatically downloads and locally caches the dataset used in this example. The data can
also be found on the DuraMAT Datahub (https://datahub.duramat.org/dataset/pvdaq-time-series-with-soiling-signal).

17

https://datahub.duramat.org/dataset/pvdaq-time-series-with-soiling-signal

RdTools, Release 2.0.5+0.g2249ae5.dirty

[1]: from datetime import timedelta
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pvlib
import rdtools
%matplotlib inline

[2]: #Update the style of plots
import matplotlib
matplotlib.rcParams.update({'font.size': 12,

'figure.figsize': [4.5, 3],
'lines.markeredgewidth': 0,
'lines.markersize': 2
})

Register time series plotting in pandas > 1.0
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

[3]: # Set the random seed for numpy to ensure consistent results
np.random.seed(0)

0: Import and preliminary calculations

This section prepares the data necessary for an rdtools calculation. The first step of the rdtools workflow is
normalization, which requires a time series of energy yield, a time series of cell temperature, and a time series of
irradiance, along with some metadata (see Step 1: Normalize)

The following section loads the data, adjusts units where needed, and renames the critical columns. The ambient
temperature sensor data source is converted into estimated cell temperature. This dataset already has plane-of-array
irradiance data, so no transposition is necessary.

A common challenge is handling datasets with and without daylight savings time. Make sure to specify a pytz
timezone that does or does not include daylight savings time as appropriate for your dataset.

The steps of this section may change depending on your data source or the system being considered. Transposition of
irradiance and modeling of cell temperature are generally outside the scope of rdtools. A variety of tools for these
calculations are available in pvlib.

[4]: # Import the example data
file_url = ('https://datahub.duramat.org/dataset/a49bb656-7b36-'

'437a-8089-1870a40c2a7d/resource/5059bc22-640d-4dd4'
'-b7b1-1e71da15be24/download/pvdaq_system_4_2010-2016'
'_subset_soilsignal.csv')

cache_file = 'PVDAQ_system_4_2010-2016_subset_soilsignal.pickle'

try:
df = pd.read_pickle(cache_file)

except FileNotFoundError:
df = pd.read_csv(file_url, index_col=0, parse_dates=True)
df.to_pickle(cache_file)

df = df.rename(columns = {
'ac_power':'power_ac',
'wind_speed': 'wind_speed',

(continues on next page)

18 Chapter 7. Documentation Contents

https://github.com/pvlib/pvlib-python

RdTools, Release 2.0.5+0.g2249ae5.dirty

(continued from previous page)

'ambient_temp': 'Tamb',
'poa_irradiance': 'poa',

})

Specify the Metadata
meta = {"latitude": 39.7406,

"longitude": -105.1774,
"timezone": 'Etc/GMT+7',
"gamma_pdc": -0.005,
"azimuth": 180,
"tilt": 40,
"power_dc_rated": 1000.0,
"temp_model_params":
pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_

→˓polymer']}

df.index = df.index.tz_localize(meta['timezone'])

loc = pvlib.location.Location(meta['latitude'], meta['longitude'], tz = meta['timezone
→˓'])
sun = loc.get_solarposition(df.index)

There is some missing data, but we can infer the frequency from
the first several data points
freq = pd.infer_freq(df.index[:10])

Then set the frequency of the dataframe.
It is recommended not to up- or downsample at this step
but rather to use interpolate to regularize the time series
to its dominant or underlying frequency. Interpolate is not
generally recommended for downsampling in this application.
df = rdtools.interpolate(df, freq)

Calculate cell temperature
df['Tcell'] = pvlib.temperature.sapm_cell(df.poa, df.Tamb,

df.wind_speed, **meta['temp_model_params'])

plot the AC power time series
fig, ax = plt.subplots(figsize=(4,3))
ax.plot(df.index, df.power_ac, 'o', alpha=0.01)
ax.set_ylim(0,1500)
fig.autofmt_xdate()
ax.set_ylabel('AC Power (W)');

7.1. Examples 19

RdTools, Release 2.0.5+0.g2249ae5.dirty

1: Normalize

Data normalization is achieved with rdtools.normalize_with_expected_power(). This function can be
used to normalize to any modeled or expected power. Note that realized PV output can be given as energy, rather than
power, by using an optional key word argument.

[5]: # Calculate the expected power with a simple PVWatts DC model
modeled_power = pvlib.pvsystem.pvwatts_dc(df['poa'], df['Tcell'], meta['power_dc_rated
→˓'],

meta['gamma_pdc'], 25.0)

Calculate the normalization, the function also returns the relevant insolation for
each point in the normalized PV energy timeseries
normalized, insolation = rdtools.normalize_with_expected_power(df['power_ac'],

modeled_power,
df['poa'])

df['normalized'] = normalized
df['insolation'] = insolation

Plot the normalized power time series
fig, ax = plt.subplots()
ax.plot(normalized.index, normalized, 'o', alpha = 0.05)
ax.set_ylim(0,2)
fig.autofmt_xdate()
ax.set_ylabel('Normalized energy');

2: Filter

Data filtering is used to exclude data points that represent invalid data, create bias in the analysis, or introduce signifi-
cant noise.

It can also be useful to remove outages and outliers. Sometimes outages appear as low but non-zero yield. Automatic
functions for outage detection are not yet included in rdtools. However, this example does filter out data points
where the normalized energy is less than 1%. System-specific filters should be implemented by the analyst if needed.

[6]: # Calculate a collection of boolean masks that can be used
to filter the time series
normalized_mask = rdtools.normalized_filter(df['normalized'])
poa_mask = rdtools.poa_filter(df['poa'])
tcell_mask = rdtools.tcell_filter(df['Tcell'])
Note: This clipping mask may be disabled when you are sure the system is not

(continues on next page)

20 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

(continued from previous page)

experiencing clipping due to high DC/AC ratio
clip_mask = rdtools.clip_filter(df['power_ac'])

filter the time series and keep only the columns needed for the
remaining steps
filtered = df[normalized_mask & poa_mask & tcell_mask & clip_mask]
filtered = filtered[['insolation', 'normalized']]

fig, ax = plt.subplots()
ax.plot(filtered.index, filtered.normalized, 'o', alpha = 0.05)
ax.set_ylim(0,2)
fig.autofmt_xdate()
ax.set_ylabel('Normalized energy');

3: Aggregate

Data is aggregated with an irradiance weighted average. This can be useful, for example with daily aggregation, to
reduce the impact of high-error data points in the morning and evening.

[7]: daily = rdtools.aggregation_insol(filtered.normalized, filtered.insolation,
frequency = 'D')

fig, ax = plt.subplots()
ax.plot(daily.index, daily, 'o', alpha = 0.1)
ax.set_ylim(0,2)
fig.autofmt_xdate()
ax.set_ylabel('Normalized energy');

7.1. Examples 21

RdTools, Release 2.0.5+0.g2249ae5.dirty

4: Degradation calculation

Data is then analyzed to estimate the degradation rate representing the PV system behavior. The results are visualized
and statistics are reported, including the 68.2% confidence interval, and the P95 exceedance value.

[8]: # Calculate the degradation rate using the YoY method
yoy_rd, yoy_ci, yoy_info = rdtools.degradation_year_on_year(daily, confidence_
→˓level=68.2)
Note the default confidence_level of 68.2 is appropriate if you would like to
report a confidence interval analogous to the standard deviation of a normal
distribution. The size of the confidence interval is adjustable by setting the
confidence_level variable.

Visualize the results

degradation_fig = rdtools.degradation_summary_plots(
yoy_rd, yoy_ci, yoy_info, daily,
summary_title='Sensor-based degradation results',
scatter_ymin=0.5, scatter_ymax=1.1,
hist_xmin=-30, hist_xmax=45, bins=100

)

In addition to the confidence interval, the year-on-year method yields an exceedance value (e.g. P95), the degrada-
tion rate that was exceeded (slower degradation) with a given probability level. The probability level is set via the
exceedance_prob keyword in degradation_year_on_year.

[9]: print('The P95 exceedance level is %.2f%%/yr' % yoy_info['exceedance_level'])

The P95 exceedance level is -0.63%/yr

5: Soiling calculations

This section illustrates how the aggregated data can be used to estimate soiling losses using the stochastic rate and re-
covery (SRR) method.1 Since our example system doesn’t experience much soiling, we apply an artificially generated
soiling signal, just for the sake of example.
1 M. G. Deceglie, L. Micheli and M. Muller, “Quantifying Soiling Loss Directly From PV Yield,” IEEE Journal of
Photovoltaics, vol. 8, no. 2, pp. 547-551, March 2018. doi: 10.1109/JPHOTOV.2017.2784682

22 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

[10]: # Apply artificial soiling signal for example
be sure to remove this for applications on real data,
and proceed with analysis on `daily` instead of `soiled_daily`

soiling = df['soiling'].resample('D').mean()
soiled_daily = soiling*daily

[11]: # Calculate the daily insolation, required for the SRR calculation
daily_insolation = filtered['insolation'].resample('D').sum()

Perform the SRR calculation
from rdtools.soiling import soiling_srr
cl = 68.2
sr, sr_ci, soiling_info = soiling_srr(soiled_daily, daily_insolation,

confidence_level=cl)

/Users/mdecegli/Documents/GitHub/rdtools/rdtools/soiling.py:15: UserWarning: The
→˓soiling module is currently experimental. The API, results, and default behaviors
→˓may change in future releases (including MINOR and PATCH releases) as the code
→˓matures.
'The soiling module is currently experimental. The API, results, '

[12]: print('The P50 insolation-weighted soiling ratio is %0.3f'%sr)

The P50 insolation-weighted soiling ratio is 0.945

[13]: print('The %0.1f confidence interval for the insolation-weighted'
' soiling ratio is %0.3f-%0.3f'%(cl, sr_ci[0], sr_ci[1]))

The 68.2 confidence interval for the insolation-weighted soiling ratio is 0.939-0.951

[14]: # Plot Monte Carlo realizations of soiling profiles
fig = rdtools.plotting.soiling_monte_carlo_plot(soiling_info, soiled_daily,
→˓profiles=200);

/Users/mdecegli/Documents/GitHub/rdtools/rdtools/plotting.py:151: UserWarning: The
→˓soiling module is currently experimental. The API, results, and default behaviors
→˓may change in future releases (including MINOR and PATCH releases) as the code
→˓matures.
'The soiling module is currently experimental. The API, results, '

[15]: # Plot the slopes for "valid" soiling intervals identified,
assuming perfect cleaning events
fig = rdtools.plotting.soiling_interval_plot(soiling_info, soiled_daily);

7.1. Examples 23

RdTools, Release 2.0.5+0.g2249ae5.dirty

/Users/mdecegli/Documents/GitHub/rdtools/rdtools/plotting.py:211: UserWarning: The
→˓soiling module is currently experimental. The API, results, and default behaviors
→˓may change in future releases (including MINOR and PATCH releases) as the code
→˓matures.
'The soiling module is currently experimental. The API, results, '

[16]: # View the first several rows of the soiling interval summary table
soiling_summary = soiling_info['soiling_interval_summary']
soiling_summary.head()

[16]: start end soiling_rate \
0 2010-02-25 00:00:00-07:00 2010-03-06 00:00:00-07:00 0.000000
1 2010-03-07 00:00:00-07:00 2010-03-11 00:00:00-07:00 0.000000
2 2010-03-12 00:00:00-07:00 2010-04-08 00:00:00-07:00 -0.002505
3 2010-04-09 00:00:00-07:00 2010-04-11 00:00:00-07:00 0.000000
4 2010-04-12 00:00:00-07:00 2010-06-15 00:00:00-07:00 -0.000594

soiling_rate_low soiling_rate_high inferred_start_loss \
0 0.000000 0.000000 0.685379
1 0.000000 0.000000 1.053439
2 -0.005069 0.000000 1.058785
3 0.000000 0.000000 1.044975
4 -0.000997 -0.000174 1.011211

inferred_end_loss length valid
0 0.863517 9 False
1 1.003025 4 False
2 0.991144 27 True
3 1.044975 2 False
4 0.973207 64 True

[17]: # View a histogram of the valid soiling rates found for the data set
fig = rdtools.plotting.soiling_rate_histogram(soiling_info, bins=50)

/Users/mdecegli/Documents/GitHub/rdtools/rdtools/plotting.py:251: UserWarning: The
→˓soiling module is currently experimental. The API, results, and default behaviors
→˓may change in future releases (including MINOR and PATCH releases) as the code
→˓matures.
'The soiling module is currently experimental. The API, results, '

24 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

These plots show generally good results from the SRR method. In this example, we have slightly overesti-
mated the soiling loss because we used the default behavior of the method key word argument in rdtools.
soiling_srr(), which does not assume that every cleaning is perfect but the example artificial soiling signal
did include perfect cleaning. We encourage you to adjust the options of rdtools.soiling_srr() for your
application.

[18]: # Calculate and view a monthly soiling rate summary
from rdtools.soiling import monthly_soiling_rates
monthly_soiling_rates(soiling_info['soiling_interval_summary'],

confidence_level=cl)

[18]: month soiling_rate_median soiling_rate_low soiling_rate_high \
0 1 -0.000942 -0.001954 -0.000692
1 2 -0.001794 -0.006180 -0.000752
2 3 -0.001096 -0.002230 -0.000394
3 4 -0.000924 -0.001899 -0.000122
4 5 -0.000305 -0.000733 -0.000086
5 6 -0.000331 -0.000777 -0.000091
6 7 -0.000404 -0.001342 -0.000140
7 8 -0.000674 -0.001779 -0.000182
8 9 -0.000856 -0.001572 -0.000191
9 10 -0.000881 -0.001413 -0.000203
10 11 -0.000920 -0.001894 -0.000229
11 12 -0.000947 -0.002455 -0.000691

interval_count
0 6
1 7
2 10
3 9
4 7
5 8
6 8
7 7
8 8
9 8
10 8
11 6

[19]: # Calculate and view annual insolation-weighted soiling ratios and their confidence
intervals based on the Monte Carlo simulation. Note that these losses include the

(continues on next page)

7.1. Examples 25

RdTools, Release 2.0.5+0.g2249ae5.dirty

(continued from previous page)

assumptions of the cleaning assumptions associated with the method parameter
of rdtools.soiling_srr(). For anything but 'perfect_clean', each year's soiling
ratio may be impacted by prior years' soiling profiles. The default behavior of
rdtools.soiling_srr uses method='half_norm_clean'

from rdtools.soiling import annual_soiling_ratios
annual_soiling_ratios(soiling_info['stochastic_soiling_profiles'],

daily_insolation,
confidence_level=cl)

[19]: year soiling_ratio_median soiling_ratio_low soiling_ratio_high
0 2010 0.961769 0.950512 0.969079
1 2011 0.944563 0.937086 0.950570
2 2012 0.939465 0.931211 0.945439
3 2013 0.954355 0.944595 0.961878
4 2014 0.949834 0.929179 0.965085
5 2015 0.950557 0.921117 0.966028
6 2016 0.937150 0.925213 0.944815

Clear sky workflow

The clear sky workflow is useful in that it avoids problems due to drift or recalibration of ground-based sensors. We
use pvlib to model the clear sky irradiance. This is renormalized to align it with ground-based measurements.
Finally we use rdtools.get_clearsky_tamb() to model the ambient temperature on clear sky days. This
modeled ambient temperature is used to model cell temperature with pvlib. If high quality ambient temperature data
is available, that can be used instead of the modeled ambient; we proceed with the modeled ambient temperature here
for illustrative purposes.

In this example, note that we have omitted wind data in the cell temperature calculations for illustrative purposes.
Wind data can also be included when the data source is trusted for improved results

We generally recommend that the clear sky workflow be used as a check on the sensor workflow. It tends to be more
sensitive than the sensor workflow, and thus we don’t recommend it as a stand-alone analysis.

Note that the calculations below rely on some objects from the steps above

Clear Sky 0: Preliminary Calculations

[20]: # Calculate the clear sky POA irradiance
clearsky = loc.get_clearsky(df.index, solar_position=sun)

cs_sky = pvlib.irradiance.isotropic(meta['tilt'], clearsky.dhi)
cs_beam = pvlib.irradiance.beam_component(meta['tilt'], meta['azimuth'],

sun.zenith, sun.azimuth, clearsky.dni)
df['clearsky_poa'] = cs_beam + cs_sky

Renormalize the clear sky POA irradiance
df['clearsky_poa'] = rdtools.irradiance_rescale(df.poa, df.clearsky_poa,

method='iterative')

Calculate the clearsky temperature
df['clearsky_Tamb'] = rdtools.get_clearsky_tamb(df.index, meta['latitude'],

meta['longitude'])
df['clearsky_Tcell'] = pvlib.temperature.sapm_cell(df.clearsky_poa, df.clearsky_Tamb,

0, **meta['temp_model_params'])

26 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Clear Sky 1: Normalize

Normalize as in step 1 above, but this time using clearsky modeled irradiance and cell temperature

[21]: # Calculate the expected power with a simple PVWatts DC model
clearsky_modeled_power = pvlib.pvsystem.pvwatts_dc(df['clearsky_poa'],

df['clearsky_Tcell'],
meta['power_dc_rated'], meta[

→˓'gamma_pdc'], 25.0)

Calculate the normalization, the function also returns the relevant insolation for
each point in the normalized PV energy timeseries
clearsky_normalized, clearsky_insolation = rdtools.normalize_with_expected_power(

df['power_ac'],
clearsky_modeled_power,
df['clearsky_poa']

)

df['clearsky_normalized'] = clearsky_normalized
df['clearsky_insolation'] = clearsky_insolation

Clear Sky 2: Filter

Filter as in step 2 above, but with the addition of a clear sky index (csi) filter so we consider only points well modeled
by the clear sky irradiance model.

[22]: # Perform clearsky filter
cs_normalized_mask = rdtools.normalized_filter(df['clearsky_normalized'])
cs_poa_mask = rdtools.poa_filter(df['clearsky_poa'])
cs_tcell_mask = rdtools.tcell_filter(df['clearsky_Tcell'])

csi_mask = rdtools.csi_filter(df.insolation, df.clearsky_insolation)

clearsky_filtered = df[cs_normalized_mask & cs_poa_mask & cs_tcell_mask &
clip_mask & csi_mask]

clearsky_filtered = clearsky_filtered[['clearsky_insolation', 'clearsky_normalized']]

Clear Sky 3: Aggregate

Aggregate the clear sky version of of the filtered data

[23]: clearsky_daily = rdtools.aggregation_insol(clearsky_filtered.clearsky_normalized,
clearsky_filtered.clearsky_insolation)

Clear Sky 4: Degradation Calculation

Estimate the degradation rate and compare to the results obtained with sensors. In this case, we see that the degradation
rate estimated with the clearsky methodology is not far off from the sensor-based estimate.

[24]: # Calculate the degradation rate using the YoY method
cs_yoy_rd, cs_yoy_ci, cs_yoy_info = rdtools.degradation_year_on_year(

clearsky_daily,
confidence_level=68.2

(continues on next page)

7.1. Examples 27

RdTools, Release 2.0.5+0.g2249ae5.dirty

(continued from previous page)

)

Note the default confidence_level of 68.2 is appropriate if you would like to
report a confidence interval analogous to the standard deviation of a normal
distribution. The size of the confidence interval is adjustable by setting the
confidence_level variable.

Visualize the results
clearsky_fig = rdtools.degradation_summary_plots(

cs_yoy_rd, cs_yoy_ci, cs_yoy_info, clearsky_daily,
summary_title='Clear-sky-based degradation results',
scatter_ymin=0.5, scatter_ymax=1.1,
hist_xmin=-30, hist_xmax=45, plot_color='orangered',
bins=100);

print('The P95 exceedance level with the clear sky analysis is %.2f%%/yr' %
cs_yoy_info['exceedance_level'])

The P95 exceedance level with the clear sky analysis is -0.81%/yr

[25]: # Compare to previous sensor results
degradation_fig

[25]:

28 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

7.1.2 System availability example

This notebook shows example usage of the inverter availability functions. As with the degradation and soiling ex-
ample, we recommend installing the specific versions of packages used to develop this notebook. This can be
achieved in your environment by running pip install -r requirements.txt followed by pip install
-r docs/notebook_requirements.txt from the base directory. (RdTools must also be separately installed.)
These environments and examples are tested with Python 3.7.

RdTools currently implements two methods of quantifying system availability. The first method compares power
measurements from inverters and the system meter to distinguish subsystem communication interruptions from true
outage events. The second method determines the uncertainty bounds around an energy estimate of a total system out-
age and compares with true production calculated from a meter’s cumulative production measurements. The RdTools
AvailabilityAnalysis class uses both methods to quantify downtime loss.

These methods are described in K. Anderson and R. Blumenthal, “Overcoming Communications Outages in Inverter
Downtime Analysis”, 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC).

[1]: import rdtools
import pvlib

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Quantifying the production impact of inverter downtime events is complicated by gaps in a system’s historical data
caused by communication interruptions. Although communication interruptions may prevent remote operation, they
usually do not result in production loss. Accurate production loss estimates require the ability to distinguish true
outages from communication interruptions.

The first method focuses on partial outages where some of a system’s inverters are reporting production and some
are not. In these cases, the method examines the AC power measurements at the inverter and system meter level to
classify each timestamp individually and estimate timeseries production loss. This level of granularity is made possible
by comparing timeseries power measurements between inverters and the meter.

Create a test dataset

First we’ll generate a test dataset to demonstrate the method. This code block just puts together an artificial dataset to
use for the analysis – feel free to skip ahead to where it gets plotted.

[2]: def make_dataset():
"""
Make an example dataset with several types of data outages for availability

→˓analysis.

Returns

df_reported : pd.DataFrame

Simulated data as a data acquisition system would report it, including the
effect of communication interruptions.

df_secret : pd.DataFrame
The secret true data of the system, not affected by communication
interruptions. Only used for comparison with the analysis output.

expected_power : pd.Series
An "expected" power signal for this hypothetical PV system, simulating a
modeled power from satellite weather data or some other method.

(continues on next page)

7.1. Examples 29

RdTools, Release 2.0.5+0.g2249ae5.dirty

(continued from previous page)

(This function creates instantaneous data. SystemAvailability is technically
→˓designed

to work with right-labeled averages. However, for the purposes of the example, the
approximation is suitable.)
"""

generate a plausible clear-sky power signal
times = pd.date_range('2019-01-01', '2019-01-12', freq='15min', tz='US/Eastern',

closed='left')
location = pvlib.location.Location(40, -80)
clearsky = location.get_clearsky(times, model='haurwitz')
just scale GHI to power for simplicity
base_power = 2.5*clearsky['ghi']
but require a minimum irradiance to turn on, simulating start-up voltage
base_power[clearsky['ghi'] < 20] = 0

df_secret = pd.DataFrame({
'inv1_power': base_power,
'inv2_power': base_power * 1.5,
'inv3_power': base_power * 0.66,

})

set the expected_power to be pretty close to actual power,
but with some autocorrelated noise and a bias:
expected_power = df_secret.sum(axis=1)
np.random.seed(2020)
N = len(times)
expected_power *= 0.9 - (0.3 * np.sin(np.arange(0, N)/7 +

np.random.normal(0, 0.2, size=N)))

Add a few days of individual inverter outages:
df_secret.loc['2019-01-03':'2019-01-05', 'inv2_power'] = 0
df_secret.loc['2019-01-02', 'inv3_power'] = 0
df_secret.loc['2019-01-07 00:00':'2019-01-07 12:00', 'inv1_power'] = 0

and a full system outage:
full_outage_date = '2019-01-08'
df_secret.loc[full_outage_date, :] = 0

calculate the system meter power and cumulative production,
including the effect of the outages:
df_secret['meter_power'] = df_secret.sum(axis=1)
interval_energy = rdtools.energy_from_power(df_secret['meter_power'])
df_secret['meter_energy'] = interval_energy.cumsum()
fill the first NaN from the cumsum with 0
df_secret['meter_energy'] = df_secret['meter_energy'].fillna(0)
add an offset to reflect previous production:
df_secret['meter_energy'] += 5e5
calculate cumulative energy for an inverter as well:
inv2_energy = rdtools.energy_from_power(df_secret['inv2_power'])
df_secret['inv2_energy'] = inv2_energy.cumsum().fillna(0)

now that the "true" data is in place, let's add some communications
→˓interruptions:

df_reported = df_secret.copy()
in full outages, we lose all the data:
df_reported.loc[full_outage_date, :] = np.nan

(continues on next page)

30 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

(continued from previous page)

add a communications interruption that overlaps with an inverter outage:
df_reported.loc['2019-01-05':'2019-01-06', 'inv1_power'] = np.nan
and a communication outage that affects everything:
df_reported.loc['2019-01-10', :] = np.nan

return df_reported, df_secret, expected_power

Let’s visualize the dataset before analyzing it with RdTools. The dotted lines show the “true” data that wasn’t recorded
by the datalogger because of interrupted communications.

[3]: df, df_secret, expected_power = make_dataset()

fig, axes = plt.subplots(3, 1, sharex=True, figsize=(8,6))
colors = plt.rcParams['axes.prop_cycle'].by_key()['color'][:3]

inverter power
df_secret[['inv1_power', 'inv2_power', 'inv3_power']].plot(ax=axes[0],

legend=False, ls=':',
color=colors)

df[['inv1_power', 'inv2_power', 'inv3_power']].plot(ax=axes[0], legend=False)
meter power
df_secret['meter_power'].plot(ax=axes[1], ls=':', color=colors[0])
df['meter_power'].plot(ax=axes[1])
meter cumulative energy
df_secret['meter_energy'].plot(ax=axes[2], ls=':', color=colors[0])
df['meter_energy'].plot(ax=axes[2])

axes[0].set_ylabel('Inverter Power [kW]')
axes[1].set_ylabel('Meter Power [kW]')
axes[2].set_ylabel('Cumulative\nMeter Energy [kWh]')
plt.show()

7.1. Examples 31

RdTools, Release 2.0.5+0.g2249ae5.dirty

Note that the solid lines show the data that would be available in our example while the dotted lines show the true
underlying behavior that we normally wouldn’t know.

If we hadn’t created this dataset ourselves, it wouldn’t necessarily be obvious why the meter shows low or no produc-
tion on some days – maybe it was just cloudy weather, maybe it was a nuisance communication outage (broken cell
modem power supply, for example), or maybe it was a true power outage. This example also shows how an inverter
can appear to be offline while actually producing normally. For example, just looking at inverter power on the 5th, it
appears that only the small inverter is producing. However, the meter shows two inverters’ worth of production. Sim-
ilarly, the 6th shows full meter production despite one inverter not reporting power. Using only the inverter-reported
power would overestimate the production loss because of the communication interruption.

System availability analysis

Now we’ll hand this data off to RdTools for analysis:

[4]: from rdtools.availability import AvailabilityAnalysis
aa = AvailabilityAnalysis(

power_system=df['meter_power'],
power_subsystem=df[['inv1_power', 'inv2_power', 'inv3_power']],
energy_cumulative=df['meter_energy'],
power_expected=expected_power,

)
identify and classify outages, rolling up to daily metrics for this short dataset:
aa.run(rollup_period='D')

/Users/mdecegli/opt/anaconda3/envs/final_release_test/lib/python3.7/site-packages/
→˓rdtools/availability.py:18: UserWarning: The availability module is currently
→˓experimental. The API, results, and default behaviors may change in future releases
→˓(including MINOR and PATCH releases) as the code matures.
'The availability module is currently experimental. The API, results, '

32 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

First, we can visualize the estimated power loss and outage information:

[5]: fig = aa.plot()
fig.set_size_inches(16, 7)
fig.axes[1].legend(loc='upper left');

/Users/mdecegli/opt/anaconda3/envs/final_release_test/lib/python3.7/site-packages/
→˓rdtools/plotting.py:320: UserWarning: The availability module is currently
→˓experimental. The API, results, and default behaviors may change in future releases
→˓(including MINOR and PATCH releases) as the code matures.
'The availability module is currently experimental. The API, results, '

Examining the plot of estimated lost power, we can see that the estimated loss is roughly in proportion to the amount
of offline capacity. In particular, the loss estimate is robust to mixed outage and communication interruption like on
the 5th when only the smallest inverter is reporting production but the analysis correctly inferred that one of the other
inverters is producing but not communicating.

RdTools also reports rolled-up production and availability metrics:

[6]: pd.set_option('precision', 3)
aa.results

[6]: lost_production actual_production availability
2019-01-01 00:00:00-05:00 0.000 19606.785 1.000
2019-01-02 00:00:00-05:00 4114.031 15583.450 0.791
2019-01-03 00:00:00-05:00 9396.788 10399.112 0.525
2019-01-04 00:00:00-05:00 9466.477 10476.235 0.525
2019-01-05 00:00:00-05:00 9522.325 10538.040 0.525
2019-01-06 00:00:00-05:00 0.000 20185.784 1.000
2019-01-07 00:00:00-05:00 2859.565 17459.339 0.859
2019-01-08 00:00:00-05:00 19448.084 0.000 0.000
2019-01-09 00:00:00-05:00 0.000 20607.950 1.000
2019-01-10 00:00:00-05:00 0.000 20763.718 1.000
2019-01-11 00:00:00-05:00 0.000 20926.869 1.000

The AvailabilityAnalysis object has other attributes that may be useful to inspect as well. The
outage_info dataframe has one row for each full system outage with several columns, perhaps the most inter-
esting of which are type and loss.

See AvailabilityAnalysis? or help(AvailabilityAnalysis) for full descriptions of the available

7.1. Examples 33

RdTools, Release 2.0.5+0.g2249ae5.dirty

attributes.

[7]: pd.set_option('precision', 2)
Show the first half of the dataframe
N = len(aa.outage_info.columns)
aa.outage_info.iloc[:, :N//2]

[7]: start end duration \
0 2019-01-07 17:00:00-05:00 2019-01-09 08:00:00-05:00 1 days 15:00:00
1 2019-01-09 17:00:00-05:00 2019-01-11 08:00:00-05:00 1 days 15:00:00

intervals daylight_intervals error_lower error_upper
0 157 35 -0.24 0.25
1 157 35 -0.24 0.25

[8]: # Show the second half
aa.outage_info.iloc[:, N//2:]

[8]: energy_expected energy_start energy_end energy_actual ci_lower \
0 19448.08 604248.74 604248.74 0.00 14819.33
1 25284.75 624856.69 645620.41 20763.72 19266.84

ci_upper type loss
0 24271.15 real 19448.08
1 31555.29 comms 0.00

Other use cases

Although this demo applies the methods for an entire PV system (comparing inverters against the meter and comparing
the meter against expected power), it can also be used at the individual inverter level. Because there are no subsystems
to compare against, the “full outage” analysis branch is used for every outage. That means that instead of basing the
loss off of the other inverters, it relies on the expected power time series being accurate, which in this example causes
the loss estimates to lose some accuracy. In this case, because the expected power signal is somewhat inaccurate, it
causes the loss estimate to be overestimated:

[9]: # make a new analysis object:
aa2 = rdtools.availability.AvailabilityAnalysis(

power_system=df['inv2_power'],
power_subsystem=df['inv2_power'].to_frame(),
energy_cumulative=df['inv2_energy'],
okay to use the system-level expected power here because it gets rescaled anyway
power_expected=expected_power,

)
identify and classify outages, rolling up to daily metrics for this short dataset:
aa2.run(rollup_period='D')
print(aa2.results['lost_production'])

2019-01-01 00:00:00-05:00 0.00
2019-01-02 00:00:00-05:00 0.00
2019-01-03 00:00:00-05:00 9931.24
2019-01-04 00:00:00-05:00 11453.27
2019-01-05 00:00:00-05:00 11238.57
2019-01-06 00:00:00-05:00 0.00
2019-01-07 00:00:00-05:00 0.00
2019-01-08 00:00:00-05:00 9505.33
2019-01-09 00:00:00-05:00 0.00
2019-01-10 00:00:00-05:00 0.00

(continues on next page)

34 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

(continued from previous page)

2019-01-11 00:00:00-05:00 0.00
Freq: D, Name: lost_production, dtype: float64

[10]: aa2.plot();

/Users/mdecegli/opt/anaconda3/envs/final_release_test/lib/python3.7/site-packages/
→˓rdtools/plotting.py:320: UserWarning: The availability module is currently
→˓experimental. The API, results, and default behaviors may change in future releases
→˓(including MINOR and PATCH releases) as the code matures.
'The availability module is currently experimental. The API, results, '

7.2 API reference

7.2.1 Submodules

RdTools is organized into submodules focused on different parts of the data analysis workflow.

degradation Functions for calculating the degradation rate of photo-
voltaic systems.

soiling Functions for calculating soiling metrics from photo-
voltaic system data.

availability Functions for detecting and quantifying production loss
from photovoltaic system downtime events.

filtering Functions for filtering and subsetting PV system data.
normalization Functions for normalizing, rescaling, and regularizing

PV system data.
aggregation Functions for calculating weighted aggregates of PV

system data.
clearsky_temperature Functions for estimating clear-sky ambient temperature.

Continued on next page

7.2. API reference 35

RdTools, Release 2.0.5+0.g2249ae5.dirty

Table 1 – continued from previous page
plotting Functions for plotting degradation and soiling analysis

results.

rdtools.degradation

Functions for calculating the degradation rate of photovoltaic systems.

Functions

degradation_classical_decomposition(...[,
...])

Estimate the trend of a timeseries using a classical
decomposition approach (moving average) and calcu-
late various statistics, including the result of a Mann-
Kendall test and a Monte Carlo-derived confidence in-
terval of slope.

degradation_ols(energy_normalized[, ...]) Estimate the trend of a timeseries using ordinary least-
squares regression and calculate various statistics in-
cluding a Monte Carlo-derived confidence interval of
slope.

degradation_year_on_year(energy_normalized) Estimate the trend of a timeseries using the year-on-year
decomposition approach and calculate a Monte Carlo-
derived confidence interval of slope.

rdtools.soiling

Functions for calculating soiling metrics from photovoltaic system data.

The soiling module is currently experimental. The API, results, and default behaviors may change in future releases
(including MINOR and PATCH releases) as the code matures.

Functions

annual_soiling_ratios(...[, confidence_level]) Return annualized soiling ratios and associated confi-
dence intervals based on stochastic soiling profiles from
SRR.

monthly_soiling_rates(soiling_interval_summary)Use Monte Carlo to calculate typical monthly soiling
rates.

soiling_srr(energy_normalized_daily, ...[, ...]) Functional wrapper for SRRAnalysis.

Classes

SRRAnalysis(energy_normalized_daily, ...[, ...]) Class for running the stochastic rate and recovery (SRR)
photovoltaic soiling loss analysis presented in Deceglie
et al.

Exceptions

36 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

NoValidIntervalError raised when no valid rows appear in the result dataframe

rdtools.availability

Functions for detecting and quantifying production loss from photovoltaic system downtime events.

The availability module is currently experimental. The API, results, and default behaviors may change in future
releases (including MINOR and PATCH releases) as the code matures.

Classes

AvailabilityAnalysis(power_system, ...) A class to perform system availability and loss analysis.

rdtools.filtering

Functions for filtering and subsetting PV system data.

Functions

clip_filter(power_ac[, quantile]) Filter data points likely to be affected by clipping with
power greater than or equal to 99% of the quant quan-
tile.

csi_filter(poa_global_measured, ...[, threshold]) Filtering based on clear-sky index (csi)
normalized_filter(energy_normalized[, ...]) Select normalized yield between low_cutoff and

high_cutoff
poa_filter(poa_global[, poa_global_low, ...]) Filter POA irradiance readings outside acceptable mea-

surement bounds.
tcell_filter(temperature_cell[, ...]) Filter temperature readings outside acceptable measure-

ment bounds.

rdtools.normalization

Functions for normalizing, rescaling, and regularizing PV system data.

Functions

check_series_frequency(series, ...) Deprecated since version 2.0.0.

delta_index(series) Deprecated since version 2.0.0.

energy_from_power(power[, target_frequency,
...])

Returns a regular right-labeled energy time series in
units of Wh per interval from a power time series.

interpolate(time_series, target[, ...]) Returns an interpolation of time_series, excluding times
associated with gaps in each column of time_series
longer than max_timedelta; NaNs are returned within
those gaps.

Continued on next page

7.2. API reference 37

RdTools, Release 2.0.5+0.g2249ae5.dirty

Table 8 – continued from previous page
irradiance_rescale(irrad, irrad_sim[, ...]) Attempt to rescale modeled irradiance to match mea-

sured irradiance on clear days.
normalize_with_expected_power(pv, ...[, ...]) Normalize PV power or energy based on expected PV

power.
normalize_with_pvwatts(energy, pvwatts_kws) Normalize system AC energy output given measured

poa_global and meteorological data.
normalize_with_sapm(energy, sapm_kws) Deprecated since version 2.0.0.

pvwatts_dc_power(poa_global, power_dc_rated) PVWatts v5 Module Model: DC power given effective
poa poa_global, module nameplate power, and cell tem-
perature.

sapm_dc_power(pvlib_pvsystem, met_data) Deprecated since version 2.0.0.

Exceptions

ConvergenceError Rescale optimization did not converge

rdtools.aggregation

Functions for calculating weighted aggregates of PV system data.

Functions

aggregation_insol(energy_normalized, insola-
tion)

Insolation weighted aggregation

rdtools.clearsky_temperature

Functions for estimating clear-sky ambient temperature.

Functions

get_clearsky_tamb(times, latitude, longitude) Estimates the ambient temperature at latitude and lon-
gitude for the given times using a Gaussian rolling win-
dow.

rdtools.plotting

Functions for plotting degradation and soiling analysis results.

Functions

availability_summary_plots(power_system,
...)

Create a figure summarizing the availability analysis re-
sults.

Continued on next page

38 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Table 12 – continued from previous page
degradation_summary_plots(yoy_rd, yoy_ci,
...)

Create plots (scatter plot and histogram) that summarize
degradation analysis results.

soiling_interval_plot(soiling_info, ...[, ...]) Create figure to visualize valid soiling profiles used in
the SRR analysis.

soiling_monte_carlo_plot(soiling_info, ...) Create figure to visualize Monte Carlo of soiling profiles
used in the SRR analysis.

soiling_rate_histogram(soiling_info[, bins]) Create histogram of soiling rates found in the SRR anal-
ysis.

7.2.2 Degradation

Functions for calculating the degradation rate of photovoltaic systems.

degradation_classical_decomposition(...[,
...])

Estimate the trend of a timeseries using a classical
decomposition approach (moving average) and calcu-
late various statistics, including the result of a Mann-
Kendall test and a Monte Carlo-derived confidence in-
terval of slope.

degradation_ols(energy_normalized[, ...]) Estimate the trend of a timeseries using ordinary least-
squares regression and calculate various statistics in-
cluding a Monte Carlo-derived confidence interval of
slope.

degradation_year_on_year(energy_normalized) Estimate the trend of a timeseries using the year-on-year
decomposition approach and calculate a Monte Carlo-
derived confidence interval of slope.

rdtools.degradation.degradation_classical_decomposition

rdtools.degradation.degradation_classical_decomposition(energy_normalized, confi-
dence_level=68.2)

Estimate the trend of a timeseries using a classical decomposition approach (moving average) and calculate
various statistics, including the result of a Mann-Kendall test and a Monte Carlo-derived confidence interval of
slope.

Parameters

• energy_normalized (pd.Series) – Daily or lower frequency time series of normal-
ized system ouput. Must be regular time series.

• confidence_level (float, default 68.2) – The size of the confidence interval
to return, in percent.

Returns

• Rd_pct (float) – Estimated degradation relative to the year 0 system capacity [%/year]

• Rd_CI (np.array) – The calculated confidence interval bounds.

• calc_info (dict) – A dict that contains slope, intercept, root mean square error of regression
(’rmse’), standard error of the slope (’slope_stderr’), intercept (’intercept_stderr’), and least
squares RegressionResults object (’ols_results’), pandas series for the annual rolling mean
(’series’), and Mann-Kendall test trend (’mk_test_trend’)

7.2. API reference 39

RdTools, Release 2.0.5+0.g2249ae5.dirty

rdtools.degradation.degradation_ols

rdtools.degradation.degradation_ols(energy_normalized, confidence_level=68.2)
Estimate the trend of a timeseries using ordinary least-squares regression and calculate various statistics includ-
ing a Monte Carlo-derived confidence interval of slope.

Parameters

• energy_normalized (pd.Series) – Daily or lower frequency time series of normal-
ized system ouput.

• confidence_level (float, default 68.2) – The size of the confidence interval
to return, in percent.

Returns

• Rd_pct (float) – Estimated degradation relative to the year 0 system capacity [%/year]

• Rd_CI (np.array) – The calculated confidence interval bounds.

• calc_info (dict) – A dict that contains slope, intercept, root mean square error of regression
(’rmse’), standard error of the slope (’slope_stderr’), intercept (’intercept_stderr’), and least
squares RegressionResults object (’ols_results’)

rdtools.degradation.degradation_year_on_year

rdtools.degradation.degradation_year_on_year(energy_normalized, recenter=True,
exceedance_prob=95, confi-
dence_level=68.2)

Estimate the trend of a timeseries using the year-on-year decomposition approach and calculate a Monte Carlo-
derived confidence interval of slope.

Parameters

• energy_normalized (pd.Series) – Daily or lower frequency time series of normal-
ized system ouput.

• recenter (bool, default True) – Specify whether data is internally recentered to
normalized yield of 1 based on first year median. If False, Rd_pct is calculated assuming
energy_normalized is passed already normalized to the year 0 system capacity.

• exceedance_prob (float, default 95) – The probability level to use for ex-
ceedance value calculation, in percent.

• confidence_level (float, default 68.2) – The size of the confidence interval
to return, in percent.

Returns

• Rd_pct (float) – Estimated degradation relative to the year 0 median system capacity
[%/year]

• confidence_interval (np.array) – confidence interval (size specified by
confidence_level) of degradation rate estimate

• calc_info (dict) –

– YoY_values - pandas series of right-labeled year on year slopes

– renormalizing_factor - float of value used to recenter data

– exceedance_level - the degradation rate that was outperformed with probability of ex-
ceedance_prob

40 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

7.2.3 Soiling

Functions for calculating soiling metrics from photovoltaic system data.

The soiling module is currently experimental. The API, results, and default behaviors may change in future releases
(including MINOR and PATCH releases) as the code matures.

soiling_srr(energy_normalized_daily, ...[, ...]) Functional wrapper for SRRAnalysis.
monthly_soiling_rates(soiling_interval_summary)Use Monte Carlo to calculate typical monthly soiling

rates.
annual_soiling_ratios(...[, confidence_level]) Return annualized soiling ratios and associated confi-

dence intervals based on stochastic soiling profiles from
SRR.

SRRAnalysis(energy_normalized_daily, ...[, ...]) Class for running the stochastic rate and recovery (SRR)
photovoltaic soiling loss analysis presented in Deceglie
et al.

SRRAnalysis.run([reps, day_scale, ...]) Run the SRR method from beginning to end.

rdtools.soiling.soiling_srr

rdtools.soiling.soiling_srr(energy_normalized_daily, insolation_daily, reps=1000, precip-
itation_daily=None, day_scale=14, clean_threshold=’infer’,
trim=False, method=’half_norm_clean’, clean_criterion=’shift’,
precip_threshold=0.01, min_interval_length=2, ex-
ceedance_prob=95.0, confidence_level=68.2, recenter=True,
max_relative_slope_error=500.0, max_negative_step=0.05)

Functional wrapper for SRRAnalysis. Perform the stochastic rate and recovery soiling loss calculation. Based
on the methods presented in Deceglie et al. JPV 8(2) p547 2018.

Parameters

• energy_normalized_daily (pd.Series) – Daily performance metric (i.e. perfor-
mance index, yield, etc.) Alternatively, the soiling ratio output of a soiling sensor (e.g. the
photocurrent ratio between matched dirty and clean PV reference cells). In either case, data
should be insolation-weighted daily aggregates.

• insolation_daily (pd.Series) – Daily plane-of-array insolation corresponding to
energy_normalized_daily. Arbitrary units.

• reps (int, default 1000) – number of Monte Carlo realizations to calculate

• precipitation_daily (pd.Series, default None) – Daily total precipita-
tion. Units ambiguous but should be the same as precip_threshold. Note default behavior of
precip_threshold. (Ignored if clean_criterion='shift'.)

• day_scale (int, default 14) – The number of days to use in rolling median for
cleaning detection, and the maximum number of days of missing data to tolerate in a valid
interval

• clean_threshold (float or 'infer', default 'infer') – The fractional
positive shift in rolling median for cleaning detection. Or specify ’infer’ to automatically
use outliers in the shift as the threshold.

• trim (bool, default False) – Whether to trim (remove) the first and last soiling
intervals to avoid inclusion of partial intervals

7.2. API reference 41

RdTools, Release 2.0.5+0.g2249ae5.dirty

• method (str, default 'half_norm_clean') – How to treat the recovery of each
cleaning event

– ’random_clean’ - a random recovery between 0-100%

– ’perfect_clean’ - each cleaning event returns the performance metric to 1

– ’half_norm_clean’(default) - The starting point of each interval is taken randomly
from a half normal distribution with its mode (mu) at 1 and its sigma equal to 1/3 *
(1-b) where b is the intercept of the fit to the interval.

• clean_criterion ({'precip_and_shift', 'precip_or_shift',
'precip', 'shift'} default 'shift') – The method of partitioning the
dataset into soiling intervals. If ’precip_and_shift’, rolling median shifts must coincide with
precipitation to be a valid cleaning event. If ’precip_or_shift’, rolling median shifts and
precipitation events are each sufficient on their own to be a cleaning event. If ’shift’, only
rolling median shifts are treated as cleaning events. If ’precip’, only precipitation events are
treated as cleaning events.

• precip_threshold (float, default 0.01) – The daily precipitation threshold
for defining precipitation cleaning events. Units must be consistent with precip.

• min_interval_length (int, default 2) – The minimum duration, in days, for
an interval to be considered valid. Cannot be less than 2 (days).

• exceedance_prob (float, default 95.0) – the probability level to use for ex-
ceedance value calculation in percent

• confidence_level (float, default 68.2) – the size of the confidence interval
to return, in percent

• recenter (bool, default True) – specify whether data is centered to normalized
yield of 1 based on first year median

• max_relative_slope_error (float, default 500.0) – the maximum rela-
tive size of the slope confidence interval for an interval to be considered valid (percentage).

• max_negative_step (float, default 0.05) – The maximum magnitude of
negative discrete steps allowed in an interval for the interval to be considered valid (units of
normalized performance metric).

Returns

• insolation_weighted_soiling_ratio (float) – P50 insolation weighted soiling ratio based on
stochastic rate and recovery analysis

• confidence_interval (np.array) – confidence interval (size specified by
confidence_level) of degradation rate estimate

• calc_info (dict) –

– ’renormalizing_factor’ - value used to recenter data

– ’exceedance_level’ - the insolation-weighted soiling ratio that was outperformed with
probability of exceedance_prob

– ’stochastic_soiling_profiles’ - List of Pandas series corresponding to the Monte Carlo
realizations of soiling ratio profiles

– ’soiling_ratio_perfect_clean’ - Pandas series of the soiling ratio during valid soiling inter-
vals assuming perfect cleaning and P50 slopes

– ’soiling_interval_summary’ - Pandas dataframe summarizing the soiling intervals identi-
fied. The columns of the dataframe are as follows:

42 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Column
Name

Description

’start’ Start timestamp of the soiling interval
’end’ End timestamp of the soiling interval
’soil-
ing_rate’

P50 Soiling rate for interval, in day^1 Negative value indicates soiling
is occurring. E.g. a rate of 0.01 indicates 1% soiling loss per day.

’soil-
ing_rate_low’

Low edge of confidence interval for soiling rate for interval, in day^1

’soil-
ing_rate_high’

High edge of confidence interval for soiling rate for interval, in day^1

’in-
ferred_start_loss’

Estimated performance metric at the start of the interval

’in-
ferred_end_loss’

Estimated performance metric at the end of the interval

’length’ Number of days in the interval
’valid’ Whether the interval meets the criteria to be treated as a valid soiling

interval

rdtools.soiling.monthly_soiling_rates

rdtools.soiling.monthly_soiling_rates(soiling_interval_summary, min_interval_length=14,
max_relative_slope_error=500.0, reps=100000, con-
fidence_level=68.2)

Use Monte Carlo to calculate typical monthly soiling rates. Samples possible soiling rates from soiling rate
confidence intervals associated with soiling intervals assuming a uniform distribution. Soiling intervals get
samples proportionally to their overlap with each calendar month.

Parameters

• soiling_interval_summary (pd.DataFrame) – DataFrame describing soiling
intervals. Typically from soiling_info['soiling_interval_summary']
obtained with rdtools.soiling.soiling_srr() or rdtools.
soiling.SRRAnalysis.run() Must have columns soiling_rate_high,
soiling_rate_low, soiling_rate, length, valid, start, and end.

• min_interval_length (int, default 14) – The minimum number of days a
soiling interval must contain to be included in the calculation. Similar to the same pa-
rameter in soiling_srr() and SRRAnalysis.run() but with a more conservative default value
as a starting point for monthly soiling rate analyses.

• max_relative_slope_error (float, default 500.0) – The maximum rela-
tive size of the slope confidence interval for an interval to be included in the calculation
(percentage).

• reps (int, default 100000) – The number of Monte Carlo samples to take for each
month.

• confidence_level (float, default 68.2) – The size of the confidence interval,
as a percentage, to use in determining the upper and lower quantiles reported in the returned
DataFrame. (The median is always included in the result.)

Returns

DataFrame describing monthly soiling rates.

7.2. API reference 43

RdTools, Release 2.0.5+0.g2249ae5.dirty

Column
Name

Description

’month’ Integer month, January (1) to December (12)
’soil-
ing_rate_median’

The median soiling rate for the month over the entire dataset, in units of day^1.
Negative value indicates soiling is occurring. E.g. a rate of 0.01 indicates 1%
soiling loss per day.

’soil-
ing_rate_low’

The lower edge of the confidence interval for the monthly soiling rate in units
of day^1

’soil-
ing_rate_high’

The upper edge of the confidence interval for the monthly soiling rate in units
of day^1

’inter-
val_count’

The number of soiling intervals contributing to the monthly calculation. If only
a few intervals contribute, the confidence interval is likely to underestimate the
true uncertainty.

Return type pd.DataFrame

rdtools.soiling.annual_soiling_ratios

rdtools.soiling.annual_soiling_ratios(stochastic_soiling_profiles, insolation_daily, confi-
dence_level=68.2)

Return annualized soiling ratios and associated confidence intervals based on stochastic soiling profiles from
SRR. Note that each year may be affected by previous years’ profiles for all SRR cleaning assumptions (i.e.
method) except perfect_clean.

Parameters

• stochastic_soiling_profiles (list) – List of pd.Series rep-
resenting profile realizations from the SRR monte carlo. Typically
soiling_interval_summary['stochastic_soiling_profiles'] ob-
tained with rdtools.soiling.soiling_srr() or rdtools.soiling.
SRRAnalysis.run()

• insolation_daily (pd.Series) – Daily plane-of-array insolation with DatetimeIn-
dex. Arbitrary units.

• confidence_level (float, default 68.2) – The size of the confidence interval
to use in determining the upper and lower quantiles reported in the returned DataFrame.
(The median is always included in the result.)

Returns

DataFrame describing annual soiling rates.

Column Name Description
’year’ Calendar year
’soil-
ing_ratio_median’

The median insolation-weighted soiling ratio for the year

’soil-
ing_ratio_low’

The lower edge of the confidence interval for insolation-weighted soil-
ing ratio for the year

’soil-
ing_ratio_high’

The upper edge of the confidence interval for insolation-weighted soil-
ing ratio for the year

Return type pd.DataFrame

44 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

rdtools.soiling.SRRAnalysis

class rdtools.soiling.SRRAnalysis(energy_normalized_daily, insolation_daily, precipita-
tion_daily=None)

Class for running the stochastic rate and recovery (SRR) photovoltaic soiling loss analysis presented in Deceglie
et al. JPV 8(2) p547 2018

Parameters

• energy_normalized_daily (pd.Series) – Daily performance metric (i.e. perfor-
mance index, yield, etc.) Alternatively, the soiling ratio output of a soiling sensor (e.g. the
photocurrent ratio between matched dirty and clean PV reference cells). In either case, data
should be insolation-weighted daily aggregates.

• insolation_daily (pd.Series) – Daily plane-of-array insolation corresponding to
energy_normalized_daily. Arbitrary units.

• precipitation_daily (pd.Series, default None) – Daily total precipita-
tion. (Ignored if clean_criterion='shift' in subsequent calculations.)

__init__(energy_normalized_daily, insolation_daily, precipitation_daily=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(energy_normalized_daily, ...[, ...]) Initialize self.
run([reps, day_scale, clean_threshold, ...]) Run the SRR method from beginning to end.

rdtools.soiling.SRRAnalysis.run

SRRAnalysis.run(reps=1000, day_scale=14, clean_threshold=’infer’, trim=False,
method=’half_norm_clean’, clean_criterion=’shift’, precip_threshold=0.01,
min_interval_length=2, exceedance_prob=95.0, confidence_level=68.2, recen-
ter=True, max_relative_slope_error=500.0, max_negative_step=0.05)

Run the SRR method from beginning to end. Perform the stochastic rate and recovery soiling loss calculation.
Based on the methods presented in Deceglie et al. "Quantifying Soiling Loss Directly From PV Yield" JPV 8(2)
p547 2018.

Parameters

• reps (int, default 1000) – number of Monte Carlo realizations to calculate

• day_scale (int, default 14) – The number of days to use in rolling median for
cleaning detection, and the maximum number of days of missing data to tolerate in a valid
interval

• clean_threshold (float or 'infer', default 'infer') – The fractional
positive shift in rolling median for cleaning detection. Or specify ’infer’ to automatically
use outliers in the shift as the threshold.

• trim (bool, default False) – Whether to trim (remove) the first and last soiling
intervals to avoid inclusion of partial intervals

• method (str, default 'half_norm_clean') – How to treat the recovery of each
cleaning event:

– ’random_clean’ - a random recovery between 0-100%

– ’perfect_clean’ - each cleaning event returns the performance metric to 1

7.2. API reference 45

RdTools, Release 2.0.5+0.g2249ae5.dirty

– ’half_norm_clean’ - The starting point of each interval is taken randomly from a half
normal distribution with its mode (mu) at 1 and its sigma equal to 1/3 * (1-b) where b is
the intercept of the fit to the interval.

• clean_criterion ({'precip_and_shift', 'precip_or_shift',
'precip', 'shift'} default 'shift') – The method of partitioning the
dataset into soiling intervals. If ’precip_and_shift’, rolling median shifts must coincide with
precipitation to be a valid cleaning event. If ’precip_or_shift’, rolling median shifts and
precipitation events are each sufficient on their own to be a cleaning event. If ’shift’, only
rolling median shifts are treated as cleaning events. If ’precip’, only precipitation events are
treated as cleaning events.

• precip_threshold (float, default 0.01) – The daily precipitation thresh-
old for defining precipitation cleaning events. Units must be consistent with self.
precipitation_daily

• min_interval_length (int, default 2) – The minimum duration for an interval
to be considered valid. Cannot be less than 2 (days).

• exceedance_prob (float, default 95.0) – The probability level to use for ex-
ceedance value calculation in percent

• confidence_level (float, default 68.2) – The size of the confidence interval
to return, in percent

• recenter (bool, default True) – Specify whether data is centered to normalized
yield of 1 based on first year median

• max_relative_slope_error (float, default 500) – the maximum relative
size of the slope confidence interval for an interval to be considered valid (percentage).

• max_negative_step (float, default 0.05) – The maximum magnitude of
negative discrete steps allowed in an interval for the interval to be considered valid (units of
normalized performance metric).

Returns

• insolation_weighted_soiling_ratio (float) – P50 insolation-weighted soiling ratio based on
stochastic rate and recovery analysis

• confidence_interval (np.array) – confidence interval (size specified by confidence_level)
of insolation-weighted soiling ratio

• calc_info (dict) –

– ’renormalizing_factor’ - value used to recenter data

– ’exceedance_level’ - the insolation-weighted soiling ratio that was outperformed with
probability of exceedance_prob

– ’stochastic_soiling_profiles’ - List of Pandas series corresponding to the Monte Carlo
realizations of soiling ratio profiles

– ’soiling_ratio_perfect_clean’ - Pandas series of the soiling ratio during valid soiling inter-
vals assuming perfect cleaning and P50 slopes

– ’soiling_interval_summary’ - Pandas dataframe summarizing the soiling intervals identi-
fied. The columns of the dataframe are as follows:

46 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Column
Name

Description

’start’ Start timestamp of the soiling interval
’end’ End timestamp of the soiling interval
’soil-
ing_rate’

P50 Soiling rate for interval, in day^1 Negative value indicates soiling
is occurring. E.g. a rate of 0.01 indicates 1% soiling loss per day.

’soil-
ing_rate_low’

Low edge of confidence interval for soiling rate for interval, in day^1

’soil-
ing_rate_high’

High edge of confidence interval for soiling rate for interval, in day^1

’in-
ferred_start_loss’

Estimated performance metric at the start of the interval

’in-
ferred_end_loss’

Estimated performance metric at the end of the interval

’length’ Number of days in the interval
’valid’ Whether the interval meets the criteria to be treated as a valid soiling

interval

7.2.4 System Availability

Functions for detecting and quantifying production loss from photovoltaic system downtime events.

The availability module is currently experimental. The API, results, and default behaviors may change in future
releases (including MINOR and PATCH releases) as the code matures.

AvailabilityAnalysis(power_system, ...) A class to perform system availability and loss analysis.
AvailabilityAnalysis.run([low_threshold,
...])

Run the availability analysis.

AvailabilityAnalysis.plot() Create a figure summarizing the availability analysis re-
sults.

rdtools.availability.AvailabilityAnalysis

class rdtools.availability.AvailabilityAnalysis(power_system, power_subsystem, en-
ergy_cumulative, power_expected)

A class to perform system availability and loss analysis.

This class follows the analysis procedure described in1, and implements two distinct algorithms. One for par-
tial (subsystem) outages and one for system-wide outages. The AvailabilityAnalysis.run() method
executes both algorithms and combines their results.

The input timeseries don’t need to be in any particular set of units as long as all power and energy units are
consistent, with energy units being the hourly-integrated power (e.g., kW and kWh). The units of the analysis
outputs will match the inputs.

Parameters

• power_system (pd.Series) – Timeseries total system power. In the typical case, this
is meter power data. Should be a right-labeled interval average (this is what is typically
recorded in many DAS).

1 Anderson K. and Blumenthal R. "Overcoming communications outages in inverter downtime analysis", 2020 IEEE 47th Photovoltaic Special-
ists Conference (PVSC).

7.2. API reference 47

RdTools, Release 2.0.5+0.g2249ae5.dirty

• power_subsystem (pd.DataFrame) – Timeseries power data, one column per sub-
system. In the typical case, this is inverter AC power data. Each column is assumed
to represent a subsystem, so no extra columns may be included. The index must match
power_system. Should be a right-labeled interval average.

• energy_cumulative (pd.Series) – Timeseries cumulative energy data for the entire
system (e.g. meter). These values must be recorded at the device itself (rather than summed
by a downstream device like a datalogger or DAS provider) to preserve its integrity across
communication interruptions. Units must match power integrated to hourly energy (e.g. if
power is in kW then energy must be in kWh).

• power_expected (pd.Series) – Expected system power data with the same index as
the measured data. This can be modeled from on-site weather measurements if instruments
are well calibrated and there is no risk of data gaps. However, because full system outages
often cause weather data to be lost as well, it may be more useful to use data from an
independent weather station or satellite-based weather provider. Should be a right-labeled
interval average.

results
Rolled-up production, loss, and availability metrics. The index is a datetime index of the period passed to
AvailabilityAnalysis.run(). The columns of the dataframe are as follows:

Column
Name

Description

’lost_production’Production loss from outages. Units match the input power units (e.g. if power is given
in kW, ’lost_production’ will be in kWh).

’ac-
tual_production’

System energy production. Same units as ’lost_production’.

’availability’ Energy-weighted system availability as a fraction (0-1).

Type pd.DataFrame

loss_system
Estimated timeseries lost power from system outages.

Type pd.Series

loss_subsystem
Estimated timeseries lost power from subsystem outages.

Type pd.Series

loss_total
Estimated total lost power from outages.

Type pd.Series

reporting_mask
Boolean mask indicating whether subsystems appear online or not.

Type pd.DataFrame

power_expected_rescaled
Expected power rescaled to better match system power during periods where the system is performing
normally.

Type pd.Series

energy_expected_rescaled
Interval expected energy calculated from power_expected_rescaled.

48 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Type pd.Series

energy_cumulative_corrected
Cumulative system production after filling in data gaps from outages with estimated production.

Type pd.Series

error_info
Records about the error between expected power and actual power.

Type pd.DataFrame

interp_lower, interp_upper
Functions to estimate the uncertainty interval bounds of expected production based on outage length.

Type function

outage_info
Records about each detected system outage, one row per outage. The primary columns of interest are
type, which can be either 'real' or 'comms' and reports whether the outage was determined to be
a real outage with lost production or just a communications interruption with no production impact; and
loss which reports the estimated production loss for the outage. The columns are as follows:

Column
Name

Description

’start’ Timestamp of the outage start.
’end’ Timestamp of the outage end.
’duration’ Length of the outage (i.e. outage_info['end'] -

outage_info['start']).
’intervals’ Total count of data intervals contained in the outage.
’day-
light_intervals’

Count of data intervals contained in the outage occurring during the day.

’er-
ror_lower’

Lower error bound as a fraction of expected energy.

’er-
ror_upper’

Upper error bound as a fraction of expected energy.

’en-
ergy_expected’

Total expected production for the outage duration.

’en-
ergy_start’

System cumulative production at the outage start.

’energy_end’ System cumulative production at the outage end.
’en-
ergy_actual’

System production during the outage (i.e., outage_info['energy_end'] -
outage_info['energy_start']).

’ci_lower’ Lower bound for the expected energy confidence interval.
’ci_upper’ Lower bound for the expected energy confidence interval.
’type’ Type of the outage (’real or ’comms’).
’loss’ Estimated production loss.

Type pd.DataFrame

Notes

This class’s ability to detect short-duration outages is limited by the resolution of the system data. For instance,
15-minute averages would not be able to resolve the rapid power cycling of an intermittent inverter. Additionally,
the loss at the edges of an outage may be underestimated because of masking by the interval averages.

7.2. API reference 49

RdTools, Release 2.0.5+0.g2249ae5.dirty

This class expects outages to be represented in the timeseries by NaN, zero, or very low values. If your DAS
does not record data from outages (e.g., a three-hour outage results in three hours of omitted timestamps), you
should insert those missing rows before using this analysis.

References

__init__(power_system, power_subsystem, energy_cumulative, power_expected)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(power_system, power_subsystem, ...) Initialize self.
plot() Create a figure summarizing the availability analysis

results.
run([low_threshold, relative_sizes, ...]) Run the availability analysis.

rdtools.availability.AvailabilityAnalysis.run

AvailabilityAnalysis.run(low_threshold=None, relative_sizes=None, power_system_limit=None,
quantiles=(0.01, 0.99), rollup_period=’M’)

Run the availability analysis.

Parameters

• low_threshold (float or pd.Series, optional) – An optional threshold
used to naively classify subsystems as online. If the threshold is a scalar, it will be used
for all subsystems. For subsystems with different capacities, a pandas Series may be
passed with index values matching the columns in power_subsystem. Units must match
power_subsystem and power_system. If omitted, the limit is calculated for each
subsystem independently as 0.001 times the 99th percentile of its power data.

• relative_sizes (dict or pd.Series, optional) – The production capacity
of each subsystem, normalized by the mean subsystem capacity. If not specified, it will be
estimated from power data.

• power_system_limit (float or pd.Series, optional) – Maximum allow-
able system power in the same units as the input power timeseries. This parameter is used to
account for cases where online subsystems can partially mitigate the loss of an offline sub-
system, for example a system with a plant controller and dynamic inverter setpoints. This
constraint is only applied to the subsystem loss calculation.

• quantiles (2-element tuple, default (0.01, 0.99)) – The quantiles of
the error distribution used for the expected energy confidence interval. The lower bound is
used to classify outages as either (1) a simple communication interruption with no produc-
tion loss or (2) a power outage with an associated production loss estimate.

• rollup_period (pandas DateOffset or alias, default 'M') – The pe-
riod on which to roll up losses and calculate availability.

rdtools.availability.AvailabilityAnalysis.plot

AvailabilityAnalysis.plot()
Create a figure summarizing the availability analysis results. The analysis must be run using the run() method
before using this method.

50 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Returns fig

Return type matplotlib Figure

7.2.5 Filtering

Functions for filtering and subsetting PV system data.

clip_filter(power_ac[, quantile]) Filter data points likely to be affected by clipping with
power greater than or equal to 99% of the quant quan-
tile.

csi_filter(poa_global_measured, ...[, threshold]) Filtering based on clear-sky index (csi)
poa_filter(poa_global[, poa_global_low, ...]) Filter POA irradiance readings outside acceptable mea-

surement bounds.
tcell_filter(temperature_cell[, ...]) Filter temperature readings outside acceptable measure-

ment bounds.
normalized_filter(energy_normalized[, ...]) Select normalized yield between low_cutoff and

high_cutoff

rdtools.filtering.clip_filter

rdtools.filtering.clip_filter(power_ac, quantile=0.98)
Filter data points likely to be affected by clipping with power greater than or equal to 99% of the quant quantile.

Parameters

• power_ac (pd.Series) – AC power in Watts

• quantile (float, default 0.98) – Value for upper threshold quantile

Returns Boolean Series of whether the given measurement is below 99% of the quantile filter.

Return type pd.Series

rdtools.filtering.csi_filter

rdtools.filtering.csi_filter(poa_global_measured, poa_global_clearsky, threshold=0.15)
Filtering based on clear-sky index (csi)

Parameters

• poa_global_measured (pd.Series) – Plane of array irradiance based on measur-
ments

• poa_global_clearsky (pd.Series) – Plane of array irradiance based on a clear sky
model

• threshold (float, default 0.15) – threshold for filter

Returns Boolean Series of whether the clear-sky index is within the threshold around 1.

Return type pd.Series

7.2. API reference 51

RdTools, Release 2.0.5+0.g2249ae5.dirty

rdtools.filtering.poa_filter

rdtools.filtering.poa_filter(poa_global, poa_global_low=200, poa_global_high=1200)
Filter POA irradiance readings outside acceptable measurement bounds.

Parameters

• poa_global (pd.Series) – POA irradiance measurements.

• poa_global_low (float, default 200) – The lower bound of acceptable values.

• poa_global_high (float, default 1200) – The upper bound of acceptable val-
ues.

Returns Boolean Series of whether the given measurement is within acceptable bounds.

Return type pd.Series

rdtools.filtering.tcell_filter

rdtools.filtering.tcell_filter(temperature_cell, temperature_cell_low=-50, tempera-
ture_cell_high=110)

Filter temperature readings outside acceptable measurement bounds.

Parameters

• temperature_cell (pd.Series) – Cell temperature measurements.

• temperature_cell_low (float, default -50) – The lower bound of accept-
able values.

• temperature_cell_high (float, default 110) – The upper bound of accept-
able values.

Returns Boolean Series of whether the given measurement is within acceptable bounds.

Return type pd.Series

rdtools.filtering.normalized_filter

rdtools.filtering.normalized_filter(energy_normalized, energy_normalized_low=0.01, en-
ergy_normalized_high=None)

Select normalized yield between low_cutoff and high_cutoff

Parameters

• energy_normalized (pd.Series) – Normalized energy measurements.

• energy_normalized_low (float, default 0.01) – The lower bound of ac-
ceptable values.

• energy_normalized_high (float, optional) – The upper bound of acceptable
values.

Returns Boolean Series of whether the given measurement is within acceptable bounds.

Return type pd.Series

52 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

7.2.6 Normalization

Functions for normalizing, rescaling, and regularizing PV system data.

energy_from_power(power[, target_frequency,
...])

Returns a regular right-labeled energy time series in
units of Wh per interval from a power time series.

interpolate(time_series, target[, ...]) Returns an interpolation of time_series, excluding times
associated with gaps in each column of time_series
longer than max_timedelta; NaNs are returned within
those gaps.

irradiance_rescale(irrad, irrad_sim[, ...]) Attempt to rescale modeled irradiance to match mea-
sured irradiance on clear days.

normalize_with_expected_power(pv, ...[, ...]) Normalize PV power or energy based on expected PV
power.

normalize_with_pvwatts(energy, pvwatts_kws) Normalize system AC energy output given measured
poa_global and meteorological data.

normalize_with_sapm(energy, sapm_kws) Deprecated since version 2.0.0.

pvwatts_dc_power(poa_global, power_dc_rated) PVWatts v5 Module Model: DC power given effective
poa poa_global, module nameplate power, and cell tem-
perature.

sapm_dc_power(pvlib_pvsystem, met_data) Deprecated since version 2.0.0.

delta_index(series) Deprecated since version 2.0.0.

check_series_frequency(series, ...) Deprecated since version 2.0.0.

rdtools.normalization.energy_from_power

rdtools.normalization.energy_from_power(power, target_frequency=None,
max_timedelta=None,
power_type=’right_labeled’)

Returns a regular right-labeled energy time series in units of Wh per interval from a power time series. For
instantaneous timeseries, a trapezoidal sum is used. For right labeled time series, a rectangular sum is used.
NaN is filled where the gap between input data points exceeds max_timedelta. Power_series should be
given in Watts.

Parameters

• power (pd.Series) – Time series of power in Watts

• target_frequency (DatetimeOffset or frequency string, default
None) – The frequency of the energy time series to be returned. If omitted, use the median
timestep of power, or if power has fewer than two elements, use power.index.freq.

• max_timedelta (pd.Timedelta, default None) – The maximum allowed gap
between power measurements. If the gap between consecutive power measurements exceeds
max_timedelta, NaN will be returned for that interval. If omitted, max_timedelta
is set internally to the median time delta in power. Ignored when power has fewer than
two elements.

• power_type ({'right_labeled', 'instantaneous'}) – The labeling conven-
tion used in power. Default: ’right_labeled’

7.2. API reference 53

RdTools, Release 2.0.5+0.g2249ae5.dirty

Returns right-labeled energy in Wh per interval

Return type pd.Series

rdtools.normalization.interpolate

rdtools.normalization.interpolate(time_series, target, max_timedelta=None, warn-
ing_threshold=0.1)

Returns an interpolation of time_series, excluding times associated with gaps in each column of time_series
longer than max_timedelta; NaNs are returned within those gaps.

Parameters

• time_series (pd.Series, pd.DataFrame) – Original values to be used in gener-
ating the interpolation

• target (pd.DatetimeIndex, DatetimeOffset, or frequency string)
–

– If DatetimeIndex: the index onto which the interpolation is to be made

– If DatetimeOffset or frequency string: the frequency at which to resample and interpolate

• max_timedelta (pd.Timedelta, default None) – The maximum allowed
gap between values in time_series. Times associated with gaps longer than
max_timedelta are excluded from the output. If omitted, max_timedelta is set
internally to two times the median time delta in time_series.

• warning_threshold (float, default 0.1) – The fraction of data exclusion
above which a warning is raised. With the default value of 0.1, a warning will be raised if
the fraction of data excluded because of data gaps longer than max_timedelta is above
than 10%.

Returns

Return type pd.Series or pd.DataFrame (matching type of time_series) with DatetimeIndex

Note: Timezone information in the DatetimeIndexes is handled automatically, however both time_series
and target should be time zone aware or they should both be time zone naive.

rdtools.normalization.irradiance_rescale

rdtools.normalization.irradiance_rescale(irrad, irrad_sim, max_iterations=100,
method=’iterative’, convergence_threshold=1e-
06)

Attempt to rescale modeled irradiance to match measured irradiance on clear days.

Parameters

• irrad (pd.Series) – measured irradiance time series

• irrad_sim (pd.Series) – modeled/simulated irradiance time series

• max_iterations (int, default 100) – The maximum number of times to attempt
rescale optimization. Ignored if method = 'single_opt'

• method (str, default 'iterative') – The calculation method to use. ’sin-
gle_opt’ implements the irradiance_rescale of rdtools v1.1.3 and earlier. ’iterative’ imple-
ments a more stable calculation that may yield different results from the single_opt method.

54 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

• convergence_threshold (float, default 1e-6) – The accept-
able iteration-to-iteration scaling factor difference to determine convergence.
If the threshold is not reached after max_iterations, raise rdtools.
normalization.ConvergenceError. Must be greater than zero. Only used
if method=='iterative'.

Returns Rescaled modeled irradiance time series

Return type pd.Series

rdtools.normalization.normalize_with_expected_power

rdtools.normalization.normalize_with_expected_power(pv, power_expected, poa_global,
pv_input=’power’)

Normalize PV power or energy based on expected PV power.

Parameters

• pv (pd.Series) – Right-labeled time series PV energy or power. If energy, should not be
cumulative, but only for preceding time step. Type (energy or power) must be specified in
the pv_input parameter.

• power_expected (pd.Series) – Right-labeled time series of expected PV power.
(Note: Expected energy is not supported.)

• poa_global (pd.Series) – Right-labeled time series of plane-of-array irradiance as-
sociated with expected_power

• pv_input ({'power' or 'energy'}) – Specifies the type of input used for pv pa-
rameter. Default: ’power’

Returns

• energy_normalized (pd.Series) – Energy normalized based on power_expected

• insolation (pd.Series) – Insolation associated with each normalized point

rdtools.normalization.normalize_with_pvwatts

rdtools.normalization.normalize_with_pvwatts(energy, pvwatts_kws)
Normalize system AC energy output given measured poa_global and meteorological data. This method uses the
PVWatts V5 module model.

Energy timeseries and poa_global timeseries can be different granularities.

Parameters

• energy (pd.Series) – Energy time series to be normalized in watt hours. Must be a
right-labeled regular time series.

• pvwatts_kws (dict) – Dictionary of parameters used in the pvwatts_dc_power function.
See Other Parameters.

Other Parameters

• poa_global (pd.Series) – Total effective plane of array irradiance.

• power_dc_rated (float) – Rated DC power of array in watts

• temperature_cell (pd.Series, optional) – Measured or derived cell temperature [degrees
Celsius]. Time series assumed to be same frequency as poa_global. If omitted, the temper-
ature term will be ignored.

7.2. API reference 55

RdTools, Release 2.0.5+0.g2249ae5.dirty

• poa_global_ref (float, default 1000) – Reference irradiance at standard test condition
[W/m**2].

• temperature_cell_ref (float, default 25) – Reference temperature at standard test condition
[degrees Celsius].

• gamma_pdc (float, default None) – Linear array efficiency temperature coefficient [1 / de-
gree Celsius]. If omitted, the temperature term will be ignored.

Note: All series are assumed to be right-labeled, meaning that the recorded value at a given timestamp refers
to the previous time interval

Returns

• energy_normalized (pd.Series) – Energy divided by PVWatts DC energy.

• insolation (pd.Series) – Insolation associated with each normalized point

rdtools.normalization.normalize_with_sapm

rdtools.normalization.normalize_with_sapm(energy, sapm_kws)
Deprecated since version 2.0.0: The normalize_with_sapm function was deprecated in rdtools 2.0.0 and will be
removed in 3.0.0. Use normalize_with_expected_power instead.

Normalize system AC energy output given measured met_data and meteorological data. This method relies on
the Sandia Array Performance Model (SAPM) to compute the effective DC energy using measured irradiance,
ambient temperature, and wind speed.

Energy timeseries and met_data timeseries can be different granularities.

Parameters

• energy (pd.Series) – Energy time series to be normalized in watt hours. Must be a
right-labeled regular time series.

• sapm_kws (dict) – Dictionary of parameters required for sapm_dc_power function. See
Other Parameters.

Other Parameters

• pvlib_pvsystem (pvlib-python LocalizedPVSystem object) – Object contains orientation,
geographic coordinates, equipment constants (including DC rated power in watts). The
object must also specify either the temperature_model_parameters attribute or
both racking_model and module_type to infer the model parameters.

• met_data (pd.DataFrame) – Measured met_data, ambient temperature, and wind speed.
Expected column names are [’DNI’, ’GHI’, ’DHI’, ’Temperature’, ’Wind Speed’]

Note: All series are assumed to be right-labeled, meaning that the recorded value at a given timestamp refers
to the previous time interval

Returns

• energy_normalized (pd.Series) – Energy divided by Sandia Model DC energy.

• insolation (pd.Series) – Insolation associated with each normalized point

56 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

rdtools.normalization.pvwatts_dc_power

rdtools.normalization.pvwatts_dc_power(poa_global, power_dc_rated, tempera-
ture_cell=None, poa_global_ref=1000, temper-
ature_cell_ref=25, gamma_pdc=None)

PVWatts v5 Module Model: DC power given effective poa poa_global, module nameplate power, and cell tem-
perature. This function differs from the PVLIB implementation by allowing cell temperature to be an optional
parameter.

Parameters

• poa_global (pd.Series) – Total effective plane of array irradiance.

• power_dc_rated (float) – Rated DC power of array in watts

• temperature_cell (pd.Series, optional) – Measured or derived cell temper-
ature [degrees Celsius]. Time series assumed to be same frequency as poa_global. If
omitted, the temperature term will be ignored.

• poa_global_ref (float, default 1000) – Reference irradiance at standard test
condition [W/m**2].

• temperature_cell_ref (float, default 25) – Reference temperature at stan-
dard test condition [degrees Celsius].

• gamma_pdc (float, default None) – Linear array efficiency temperature coeffi-
cient [1 / degree Celsius]. If omitted, the temperature term will be ignored.

Note: All series are assumed to be right-labeled, meaning that the recorded value at a given timestamp refers
to the previous time interval

Returns power_dc – DC power in watts determined by PVWatts v5 equation.

Return type pd.Series

rdtools.normalization.sapm_dc_power

rdtools.normalization.sapm_dc_power(pvlib_pvsystem, met_data)
Deprecated since version 2.0.0: The sapm_dc_power function was deprecated in rdtools 2.0.0 and will be re-
moved in 3.0.0. Use normalize_with_expected_power instead.

Use Sandia Array Performance Model (SAPM) and PVWatts to compute the effective DC power using measured
irradiance, ambient temperature, and wind speed. Effective irradiance and cell temperature are calculated with
SAPM, and DC power with PVWatts.

Parameters

• pvlib_pvsystem (pvlib-python LocalizedPVSystem object) –
Object contains orientation, geographic coordinates, equipment constants (in-
cluding DC rated power in watts). The object must also specify either the
temperature_model_parameters attribute or both racking_model and
module_type attributes to infer the temperature model parameters.

• met_data (pd.DataFrame) – Measured irradiance components, ambient temperature,
and wind speed. Expected met_data DataFrame column names: [’DNI’, ’GHI’, ’DHI’,
’Temperature’, ’Wind Speed’]

7.2. API reference 57

RdTools, Release 2.0.5+0.g2249ae5.dirty

Note: All series are assumed to be right-labeled, meaning that the recorded value at a given timestamp refers
to the previous time interval

Returns

• power_dc (pd.Series) – DC power in watts derived using Sandia Array Performance Model
and PVWatts.

• effective_poa (pd.Series) – Effective irradiance calculated with SAPM

rdtools.normalization.delta_index

rdtools.normalization.delta_index(series)
Deprecated since version 2.0.0: The _delta_index function was deprecated in rdtools 2.0.0 and will be removed
in 3.0.0.

Takes a pandas series with a DatetimeIndex as input and returns (time step sizes, average time step size) in hours

Parameters series (pd.Series) – A pandas timeseries

Returns

• deltas (pd.Series) – A timeseries representing the timestep sizes of series

• mean (float) – The average timestep

rdtools.normalization.check_series_frequency

rdtools.normalization.check_series_frequency(series, series_description)
Deprecated since version 2.0.0: The _check_series_frequency function was deprecated in rdtools 2.0.0 and will
be removed in 3.0.0.

Returns the inferred frequency of a pandas series, raises ValueError using series_description if it can’t.

Parameters

• series (pd.Series) – The timeseries to infer the frequency of.

• series_description (str) – The description to use when raising an error.

Returns freq – The inferred index frequency

Return type pandas Offsets string

7.2.7 Aggregation

Functions for calculating weighted aggregates of PV system data.

aggregation_insol(energy_normalized, insola-
tion)

Insolation weighted aggregation

rdtools.aggregation.aggregation_insol

rdtools.aggregation.aggregation_insol(energy_normalized, insolation, frequency=’D’)
Insolation weighted aggregation

58 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Parameters

• energy_normalized (pd.Series) – Normalized energy time series

• insolation (pd.Series) – Time series of insolation associated with each en-
ergy_normalized point

• frequency (Pandas offset string, default 'D') – Target frequency at
which to aggregate

Returns aggregated – Insolation weighted average, aggregated at frequency

Return type pd.Series

7.2.8 Clear-Sky Temperature

Functions for estimating clear-sky ambient temperature.

get_clearsky_tamb(times, latitude, longitude) Estimates the ambient temperature at latitude and lon-
gitude for the given times using a Gaussian rolling win-
dow.

rdtools.clearsky_temperature.get_clearsky_tamb

rdtools.clearsky_temperature.get_clearsky_tamb(times, latitude, longitude, win-
dow_size=40, gauss_std=20)

Estimates the ambient temperature at latitude and longitude for the given times using a Gaussian rolling window.

Parameters

• times (pd.DatetimeIndex) – A pandas DatetimeIndex, localized to local time

• latitude (float) – Coordinates in decimal degrees.

• longitude (float) – Coordinates in decimal degrees. Positive is east of the prime
meridian.

• window_size (int, default 40) – The window size in days to use when calculating
rolling averages.

• gauss_std (int, default 20) – The standard deviation in days to use for the Gaus-
sian rolling window.

Returns clear sky ambient temperature

Return type pd.Series

Notes

Uses data from images created by Jesse Allen, NASA’s Earth Observatory using data courtesy of the MODIS
Land Group.

• https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTD_CLIM_M

• https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTN_CLIM_M

7.2. API reference 59

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTD_CLIM_M
https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTN_CLIM_M

RdTools, Release 2.0.5+0.g2249ae5.dirty

7.2.9 Plotting

Functions for plotting degradation and soiling analysis results.

degradation_summary_plots(yoy_rd, yoy_ci,
...)

Create plots (scatter plot and histogram) that summarize
degradation analysis results.

soiling_monte_carlo_plot(soiling_info, ...) Create figure to visualize Monte Carlo of soiling profiles
used in the SRR analysis.

soiling_interval_plot(soiling_info, ...[, ...]) Create figure to visualize valid soiling profiles used in
the SRR analysis.

soiling_rate_histogram(soiling_info[, bins]) Create histogram of soiling rates found in the SRR anal-
ysis.

availability_summary_plots(power_system,
...)

Create a figure summarizing the availability analysis re-
sults.

rdtools.plotting.degradation_summary_plots

rdtools.plotting.degradation_summary_plots(yoy_rd, yoy_ci, yoy_info, normalized_yield,
hist_xmin=None, hist_xmax=None,
bins=None, scatter_ymin=None, scat-
ter_ymax=None, plot_color=None, sum-
mary_title=None, scatter_alpha=0.5)

Create plots (scatter plot and histogram) that summarize degradation analysis results.

Parameters

• yoy_rd (float) – rate of relative performance change in %/yr

• yoy_ci (float) – one-sigma confidence interval of degradation rate estimate

• yoy_info (dict) – a dictionary with keys:

– YoY_values - pandas series of right-labeled year on year slopes

– renormalizing_factor - float value used to recenter data

– exceedance_level - the degradation rate that was outperformed with a prob-
ability given by the exceedance_prob parameter in the degradation.
degradation_year_on_year()

• normalized_yield (pd.Series) – PV yield data that is normalized, filtered and ag-
gregated

• hist_xmin (float, optional) – lower limit of x-axis for the histogram

• hist_xmax (float, optional) – upper limit of x-axis for the histogram

• bins (int, optional) – Number of bins in the histogram distribution. If omitted,
len(yoy_values) // 40 will be used

• scatter_ymin (float, optional) – lower limit of y-axis for the scatter plot

• scatter_ymax (float, optional) – upper limit of y-axis for the scatter plot

• plot_color (str, optional) – color of the summary plots

• summary_title (str, optional) – overall title for summary plots

• scatter_alpha (float, default 0.5) – Transparency of the scatter plot

60 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Note: It should be noted that the yoy_rd, yoy_ci and yoy_info are the outputs from degradation.
degradation_year_on_year().

Returns fig – Figure with two axes

Return type matplotlib Figure

rdtools.plotting.soiling_monte_carlo_plot

rdtools.plotting.soiling_monte_carlo_plot(soiling_info, normalized_yield,
point_alpha=0.5, profile_alpha=0.05,
ymin=None, ymax=None, profiles=None,
point_color=None, profile_color=’C1’)

Create figure to visualize Monte Carlo of soiling profiles used in the SRR analysis.

Warning: The soiling module is currently experimental. The API, results, and default behaviors may
change in future releases (including MINOR and PATCH releases) as the code matures.

Parameters

• soiling_info (dict) – soiling_info returned by soiling.SRRAnalysis.
run() or soiling.soiling_srr().

• normalized_yield (pd.Series) – PV yield data that is normalized, filtered and ag-
gregated.

• point_alpha (float, default 0.5) – tranparency of the normalized_yield
points

• profile_alpha (float, default 0.05) – transparency of each profile

• ymin (float, optional) – minimum y coordinate

• ymax (float, optional) – maximum y coordinate

• profiles (int, optional) – the number of stochastic profiles to plot. If not speci-
fied, plot all profiles.

• point_color (str, optional) – color of the normalized_yield points

• profile_color (str, default 'C1') – color of the stochastic profiles

Returns fig

Return type matplotlib Figure

rdtools.plotting.soiling_interval_plot

rdtools.plotting.soiling_interval_plot(soiling_info, normalized_yield, point_alpha=0.5,
profile_alpha=1, ymin=None, ymax=None,
point_color=None, profile_color=None)

Create figure to visualize valid soiling profiles used in the SRR analysis.

7.2. API reference 61

RdTools, Release 2.0.5+0.g2249ae5.dirty

Warning: The soiling module is currently experimental. The API, results, and default behaviors may
change in future releases (including MINOR and PATCH releases) as the code matures.

Parameters

• soiling_info (dict) – soiling_info returned by soiling.SRRAnalysis.
run() or soiling.soiling_srr().

• normalized_yield (pd.Series) – PV yield data that is normalized, filtered and ag-
gregated.

• point_alpha (float, default 0.5) – tranparency of the normalized_yield
points

• profile_alpha (float, default 1) – transparency of soiling profile

• ymin (float, optional) – minimum y coordinate

• ymax (float, optional) – maximum y coordinate

• point_color (str, optional) – color of the normalized_yield points

• profile_color (str, optional) – color of the soiling intervals

Returns fig

Return type matplotlib Figure

rdtools.plotting.soiling_rate_histogram

rdtools.plotting.soiling_rate_histogram(soiling_info, bins=None)
Create histogram of soiling rates found in the SRR analysis.

Warning: The soiling module is currently experimental. The API, results, and default behaviors may
change in future releases (including MINOR and PATCH releases) as the code matures.

Parameters

• soiling_info (dict) – soiling_info returned by soiling.SRRAnalysis.
run() or soiling.soiling_srr().

• bins (int) – number of histogram bins to use

Returns fig

Return type matplotlib Figure

rdtools.plotting.availability_summary_plots

rdtools.plotting.availability_summary_plots(power_system, power_subsystem,
loss_total, energy_cumulative, en-
ergy_expected_rescaled, outage_info)

Create a figure summarizing the availability analysis results.

Because all of the parameters to this function are products of an AvailabilityAnalysis object, it is usually easier
to use availability.AvailabilityAnalysis.plot() instead of running this function manually.

62 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

Warning: The availability module is currently experimental. The API, results, and default behaviors may
change in future releases (including MINOR and PATCH releases) as the code matures.

Parameters

• power_system (pd.Series) – Timeseries total system power.

• power_subsystem (pd.DataFrame) – Timeseries power data, one column per sub-
system.

• loss_total (pd.Series) – Timeseries system lost power.

• energy_cumulative (pd.Series) – Timeseries system cumulative energy.

• energy_expected_rescaled (pd.Series) – Timeseries expected energy, rescaled
to match actual energy. This reflects interval energy, not cumulative.

• outage_info (pd.DataFrame) – A dataframe with information about system outages.

Returns fig

Return type matplotlib Figure

See also:

rdtools.availability.AvailabilityAnalysis.plot()

Examples

>>> aa = AvailabilityAnalysis(...)
>>> aa.run()
>>> fig = rdtools.plotting.availability_summary_plots(aa.power_system,
... aa.power_subsystem, aa.loss_total, aa.energy_cumulative,
... aa.energy_expected_rescaled, aa.outage_info)

7.3 RdTools Change Log

7.3.1 v2.0.5 (December 30, 2020)

Testing

• Add a flake8 code style check to the continuous integration checks (GH #231)

• Moved several pytest fixtures from soiling_test.py and availability_test.py to conftest.
py so that they are shared across test files (GH #231)

• Add Python 3.9 to CI testing (GH #249)

• Fix test suite error raised when using pandas 1.2.0 (GH #251)

Documentation

• Organized example notebooks into a sphinx gallery (GH #240)

7.3. RdTools Change Log 63

https://github.com/NREL/rdtools/pull/231
https://github.com/NREL/rdtools/pull/231
https://github.com/NREL/rdtools/pull/249
https://github.com/NREL/rdtools/pull/251
https://github.com/NREL/rdtools/pull/240

RdTools, Release 2.0.5+0.g2249ae5.dirty

Requirements

• Add support for python 3.9 (GH #249)

• Update requirements.txt versions for numpy, scipy, pandas, h5py and statsmodels to versions that have
wheels available for python 3.6-3.9. Note that the minimum versions are unchanged. (GH #249).

Contributors

• Kevin Anderson (@kanderso-nrel)

• Michael Deceglie (@mdeceglie)

• Chris Deline (@cdeline)

7.3.2 v2.0.4 (December 4, 2020)

Bug Fixes

• Fix bug related to leading NaN values with energy_from_power(). This fixed a small normalization error
in degradation_and_soiling_example.ipynb and slightly changed the clear-sky degradation results
(GH #244, GH #245)

Contributors

• Kevin Anderson (@kanderso-nrel)

7.3.3 v2.0.3 (November 20, 2020)

Requirements

• Change to docs/notebook_requirements.txt: notebook version from 5.7.8 to 6.1.5 and terminado
version from 0.8.1 to 0.8.3 (GH #239)

Contributors

• Mike Deceglie (@mdeceglie)

• @dependabot

7.3.4 v2.0.2 (November 17, 2020)

Examples

• degradation_and_soiling_example.ipynb modified to not use max_timedelta parameter in
interpolate() and energy_from_power() in Step 0 (GH #237)

Contributors

• Mike Deceglie (@mdeceglie)

64 Chapter 7. Documentation Contents

https://github.com/NREL/rdtools/pull/249
https://github.com/NREL/rdtools/pull/249
https://github.com/kanderso-nrel
https://github.com/mdeceglie
https://github.com/cdeline
https://github.com/NREL/rdtools/issues/244
https://github.com/NREL/rdtools/pull/245
https://github.com/kanderso-nrel
https://github.com/NREL/rdtools/pull/239
https://github.com/mdeceglie
https://github.com/dependabot
https://github.com/NREL/rdtools/pull/237
https://github.com/mdeceglie

RdTools, Release 2.0.5+0.g2249ae5.dirty

7.3.5 v2.0.1 (October 30, 2020)

Deprecations

• The deprecation of pvwatts_dc_power() and normalize_with_pvwatts() has been reversed. (GH
#227)

Contributors

• Mike Deceglie (@mdeceglie)

• Kevin Anderson (@kanderso-nrel)

7.3.6 v2.0.0 (October 20, 2020)

Version 2.0.0 adds experimental soiling and availability modules, plotting capability, and includes updates to normal-
ization work flow. This major release introduces some breaking changes to the API. Details below.

API Changes

• The calculations internal to normalize_with_pvwatts() and normalize_with_sapm() have
changed. Generally, when working with raw power data it should be converted to right-labeled energy with
energy_from_power() before being used with these normalization functions (GH #105, GH #108).

• Remove low_power_cutoff parameter in clip_filter() (GH #84).

• Many kwargs have changed name (but not input order) to bring nomenclature into closer alignment with the
DuraMAT pv-terms project: (GH #185)

– aggregation_insol() first kwarg is now energy_normalized.

– degradation_year_on_year(), degradation_ols() and
degradation_classical_decomposition() first kwarg is now energy_normalized.

– normalized_filter() input kwargs are now energy_normalized,
energy_normalized_low and energy_normalized_high.

– poa_filter() input kwargs are now poa_global, poa_global_low and poa_global_high.

– tcell_filter() input kwargs are now temperature_cell, temperature_cell_low and
temperature_cell_high.

– clip_filter() input kwargs are now power_ac and quantile.

– csi_filter() first two kwargs are now poa_global_measured, poa_global_clearsky.

– normalize_with_pvwatts() pvwatts_kws dictionary keys have been renamed.

– pvwatts_dc_power() input kwargs are now poa_global, power_dc_rated,
temperature_cell, poa_global_ref, temperature_cell_ref, gamma_pdc.

– irradiance_rescale() second kwarg is now irrad_sim

7.3. RdTools Change Log 65

https://github.com/NREL/rdtools/pull/227
https://github.com/NREL/rdtools/pull/227
https://github.com/mdeceglie
https://github.com/kanderso-nrel
https://github.com/NREL/rdtools/pull/105
https://github.com/NREL/rdtools/pull/108
https://github.com/NREL/rdtools/issues/84
https://duramat.github.io/pv-terms
https://github.com/NREL/rdtools/pull/185

RdTools, Release 2.0.5+0.g2249ae5.dirty

Deprecations

• The functions pvwatts_dc_power(), sapm_dc_power(), normalize_with_pvwatts(),
and normalize_with_sapm() have been deprecated in favor of
normalize_with_expected_power(). (GH #215)

• delta_index() and check_series_frequency() (GH #222)

Enhancements

• Add new soiling module to implement the stochastic rate and recovery method:

– Create new class SRRAnalysis and helper function soiling_srr() (GH #112, GH #168, GH #169,
GH #176, GH #208, GH #213)

– Create functions monthly_soiling_rates() and annual_soiling_ratios() (GH #193, GH
#207)

• Create new module availability with the class AvailabilityAnalysis for estimating timeseries
system availability (GH #131)

• Add new function normalize_with_expected_power() (GH #173).

• Add new functions energy_from_power() and interpolate() (GH #105, GH #108, GH #182, GH
#212).

• Add new function normalized_filter() (GH #139)

• Add new plotting module for generating standard plots (GH #138, GH #131)

• Add parameter convergence_threshold to irradiance_rescale() (GH #152).

Bug fixes

• Allow max_iterations=0 in irradiance_rescale() (GH #152).

Testing

• Add Python 3.7 and 3.8 to CI testing (GH #135).

• Add CI configuration based on the minimum dependency versions (GH #197)

Documentation

• Create sphinx documentation and set up ReadTheDocs (GH #125).

• Add guides on running tests and building sphinx docs (GH #136).

• Improve module-level docstrings (GH #137).

• Update landing page and add new "Inverter Downtime" documentation page based on the availability notebook
(GH #131)

66 Chapter 7. Documentation Contents

https://github.com/NREL/rdtools/pull/215
https://github.com/NREL/rdtools/pull/222
https://github.com/NREL/rdtools/pull/112
https://github.com/NREL/rdtools/pull/168
https://github.com/NREL/rdtools/pull/169
https://github.com/NREL/rdtools/pull/176
https://github.com/NREL/rdtools/pull/208
https://github.com/NREL/rdtools/pull/213
https://github.com/NREL/rdtools/pull/193
https://github.com/NREL/rdtools/pull/207
https://github.com/NREL/rdtools/pull/207
https://github.com/NREL/rdtools/pull/131
https://github.com/NREL/rdtools/pull/173
https://github.com/NREL/rdtools/pull/105
https://github.com/NREL/rdtools/pull/108
https://github.com/NREL/rdtools/pull/182
https://github.com/NREL/rdtools/pull/212
https://github.com/NREL/rdtools/pull/212
https://github.com/NREL/rdtools/pull/139
https://github.com/NREL/rdtools/pull/138
https://github.com/NREL/rdtools/pull/131
https://github.com/NREL/rdtools/pull/152
https://github.com/NREL/rdtools/pull/152
https://github.com/NREL/rdtools/pull/135
https://github.com/NREL/rdtools/pull/197
https://github.com/NREL/rdtools/pull/125
https://github.com/NREL/rdtools/pull/136
https://github.com/NREL/rdtools/pull/137
https://github.com/NREL/rdtools/pull/131

RdTools, Release 2.0.5+0.g2249ae5.dirty

Requirements

• Drop support for Python 2.7, minimum supported version is now 3.6 (GH #135).

• Increase minimum pvlib version to 0.7.0 (GH #170)

• Update requirements.txt and notebook_requirements.txt to avoid conflicting specifications. Taken together, they
represent the complete environment for the notebook example (GH #164).

• Add minimum matplotlib requirement of 3.0.0 (released September 18, 2018) (GH #197)

• Increase minimum numpy version from 1.12 (released January 15, 2017) to 1.15 (released July 23, 2018) (GH
#197)

Example Updates

• Seed numpy.random to ensure repeatable results (GH #164).

• Use normalized_filter() instead of manually filtering the normalized energy timeseries. Also updated
the associated mask variable names (GH #139).

• Add soiling section to the original example notebook.

• Add a new example notebook that analyzes data from a PV system located at NREL’s South Table Mountain
campus (PVDAQ system #4) (GH #171).

• Explicitly register pandas datetime converters which were deprecated.

• Add new system_availability_example.ipynb notebook (GH #131)

Contributors

• Mike Deceglie (@mdeceglie)

• Kevin Anderson (@kanderso-nrel)

• Chris Deline (@cdeline)

• Will Vining (@wfvining)

7.3.7 v1.2.3 (April 12, 2020)

• Updates dependencies

• Versioneer bug fix

• Licence update

Contributors

• Mike Deceglie (@mdeceglie)

7.3.8 v1.2.2 (October 12, 2018)

Patch that adds author email to enable pypi deployment

7.3. RdTools Change Log 67

https://github.com/NREL/rdtools/pull/135
https://github.com/NREL/rdtools/pull/170
https://github.com/NREL/rdtools/pull/164
https://github.com/NREL/rdtools/pull/197
https://github.com/NREL/rdtools/pull/197
https://github.com/NREL/rdtools/pull/197
https://github.com/NREL/rdtools/pull/164
https://github.com/NREL/rdtools/pull/139
https://github.com/NREL/rdtools/pull/171
https://github.com/pandas-dev/pandas/issues/18301
https://github.com/NREL/rdtools/pull/131
https://github.com/mdeceglie
https://github.com/kanderso-nrel
https://github.com/cdeline
https://github.com/wfvining
https://github.com/mdeceglie

RdTools, Release 2.0.5+0.g2249ae5.dirty

Contributors

• Mike Deceglie (@mdeceglie)

7.3.9 v1.2.1 (October 12, 2018)

This update includes automated testing and deployment to support development along with some bug fixes to the
library itself, a documented environment for the example notebook, and new example results to reflect changes in the
example dataset. It addresses GH #49, GH #76, GH #78, GH #79, GH #80, GH #85, GH #86, and GH #92.

Contributors

• Mike Deceglie (@mdeceglie)

• Adam Shinn (@abshinn)

• Chris Deline (@cdeline)

• nb137 (@nb137)

7.3.10 v1.2.0 (March 30, 2018)

This incorporates changes including:

• Enables users to control confidence intervals reported in degradation calculations (GH #59)

• Adds python 3 support (GH #56 and GH #67)

• Fixes bugs (GH #61 GH #57)

• Improvements/typo fixes to docstrings

• Fixes error in check for two years of data in degradation_year_on_year

• Improves the calculations underlying irradiance_rescale

Contributors

• Mike Deceglie (@mdeceglie)

• Ambarish Nag (@ambarishnag)

• Gregory Kimball (@GregoryKimball)

• Chris Deline (@cdeline)

• Mark Mikofski (@mikofski)

7.3.11 v1.1.3 (December 6, 2017)

This patch includes the following changes:

1. Update the notebook for improved plotting with Pandas v.0.21.0

2. Fix installation bug related to package data

68 Chapter 7. Documentation Contents

https://github.com/mdeceglie
https://github.com/NREL/rdtools/issues/49
https://github.com/NREL/rdtools/issues/76
https://github.com/NREL/rdtools/issues/78
https://github.com/NREL/rdtools/issues/79
https://github.com/NREL/rdtools/issues/80
https://github.com/NREL/rdtools/issues/85
https://github.com/NREL/rdtools/issues/86
https://github.com/NREL/rdtools/issues/92
https://github.com/mdeceglie
https://github.com/abshinn
https://github.com/cdeline
https://github.com/nb137
https://github.com/NREL/rdtools/issues/59
https://github.com/NREL/rdtools/issues/56
https://github.com/NREL/rdtools/issues/67
https://github.com/NREL/rdtools/issues/61
https://github.com/NREL/rdtools/issues/57
https://github.com/mdeceglie
https://github.com/ambarishnag
https://github.com/GregoryKimball
https://github.com/cdeline
https://github.com/mikofski

RdTools, Release 2.0.5+0.g2249ae5.dirty

Contributors

• Mike Deceglie (@mdeceglie)

• Chris Deline (@cdeline)

7.3.12 v1.1.2 (November 6, 2017)

This patch includes the following changes:

1. Fix bugs in installation

2. Update requirements

3. Notebook plots made compatible with pandas v.0.21.0

Contributors

• Mike Deceglie (@mdeceglie)

7.3.13 v1.1.1 (November 1, 2017)

This patch:

1. Improves documentation

2. Fixes installation requirements

Contributors

• Mike Deceglie (@mdeceglie)

• Adam Shinn (@abshinn)

• Chris Deline (@cdeline)

7.3.14 v1.1.0 (September 30, 2017)

This update includes the addition of filters, functions to support a clear-sky workflow, and updates to the example
notebook.

Contributors

• Mike Deceglie (@mdeceglie)

• Adam Shinn (@abshinn)

• Ambarish Nag (@ambarishnag)

• Gregory Kimball (@GregoryKimball)

• Chris Deline (@cdeline)

• Jiyang Yan (@yjy1663)

7.3. RdTools Change Log 69

https://github.com/mdeceglie
https://github.com/cdeline
https://github.com/mdeceglie
https://github.com/mdeceglie
https://github.com/abshinn
https://github.com/cdeline
https://github.com/mdeceglie
https://github.com/abshinn
https://github.com/ambarishnag
https://github.com/GregoryKimball
https://github.com/cdeline
https://github.com/yjy1663

RdTools, Release 2.0.5+0.g2249ae5.dirty

7.4 Developer Notes

This page documents some of the workflows specific to RdTools development.

7.4.1 Installing RdTools source code

To make changes to RdTools, run the test suite, or build the documentation locally, you’ll need to have a local copy
of the git repository. Installing RdTools using pip will install a condensed version that doesn’t include the full source
code. To get the full source code, you’ll need to clone the RdTools source repository from Github with e.g.

git clone https://github.com/NREL/rdtools.git

from the command line, or using a GUI git client like Github Desktop. This will clone the entire git repository onto
your computer.

7.4.2 Installing RdTools dependencies

The packages necessary to run RdTools itself can be installed with pip. You can install the dependencies along with
RdTools itself from PyPI:

pip install rdtools

This will install the latest official release of RdTools. If you want to work with a development version and you have
cloned the Github repository to your computer, you can also install RdTools and dependencies by navigating to the
repository root, switching to the branch you’re interested in, for instance:

git checkout development

and running:

pip install .

This will install based on whatever RdTools branch you have checked out. You can check what version is currently
installed by inspecting rdtools.__version__:

>>> rdtools.__version__
'1.2.0+188.g5a96bb2'

The hex string at the end represents the hash of the git commit for your installed version.

Installing optional dependencies

RdTools has extra dependencies for running its test suite and building its documentation. These packages aren’t
necessary for running RdTools itself and are only needed if you want to contribute source code to RdTools.

Note: These will install RdTools along with other packages necessary to build its documentation and run its test suite.
We recommend doing this in a virtual environment to keep package installations between projects separate!

Optional dependencies can be installed with the special syntax:

70 Chapter 7. Documentation Contents

https://pypi.org/project/rdtools/
https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies

RdTools, Release 2.0.5+0.g2249ae5.dirty

pip install rdtools[test] # test suite dependencies
pip install rdtools[doc] # documentation dependencies

Or, if your local repository has an updated dependencies list:

pip install .[test] # test suite dependencies
pip install .[doc] # documentation dependencies

7.4.3 Running the test suite

RdTools uses pytest to run its test suite. If you haven’t already, install the testing dependencies (Installing optional
dependencies).

To run the entire test suite, navigate to the git repo folder and run

pytest

For convenience, pytest lets you run tests for a single module if you don’t want to wait around for the entire suite to
finish:

pytest rdtools/test/soiling_test.py

And even a single test function:

pytest rdtools/test/soiling_test.py::test_soiling_srr

You can also evaluate code coverage when running the test suite using the coverage package:

coverage run -m pytest
coverage report

The first line runs the test suite and keeps track of exactly what lines of code were run during test execution. The
second line then prints out a summary report showing how much much of each source file was executed in the test
suite. If a percentage is below 100, that means a function isn’t tested or a branch inside a function isn’t tested. To get
specific details, you can run coverage html to generate a detailed HTML report at htmlcov/index.html to
view in a browser.

7.4.4 Checking for code style

RdTools uses flake8 to validate code style. To run this check locally you’ll need to have flake8 installed (see Installing
optional dependencies). Then navigate to the git repo folder and run

flake8

Or, for a more detailed report:

flake8 --count --statistics --show-source

7.4.5 Building documentation locally

RdTools uses Sphinx to build its documentation. If you haven’t already, install the documentation dependencies
(Installing optional dependencies).

7.4. Developer Notes 71

https://docs.pytest.org/en/latest/
https://coverage.readthedocs.io
https://flake8.pycqa.org/en/latest/
https://www.sphinx-doc.org/

RdTools, Release 2.0.5+0.g2249ae5.dirty

Once the required packages are installed, change your console’s working directory to rdtools/docs/sphinx and
run

make html

Note that on Windows, you don’t actually need the make utility installed for this to work because there is a make.bat
in this directory. Building the docs should result in output like this:

(venv)$ make html
Running Sphinx v1.8.5
making output directory...
[autosummary] generating autosummary for: api.rst, example.nblink, index.rst, readme_
→˓link.rst
[autosummary] generating autosummary for: C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.aggregation.
→˓aggregation_insol.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.aggregation.
→˓rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.
→˓clearsky_temperature.get_clearsky_tamb.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.clearsky_
→˓temperature.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.degradation.
→˓degradation_classical_decomposition.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.degradation.
→˓degradation_ols.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.degradation.
→˓degradation_year_on_year.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.degradation.
→˓rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.
→˓filtering.clip_filter.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.filtering.csi_
→˓filter.rst, ..., C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.
→˓normalize_with_pvwatts.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.
→˓normalize_with_sapm.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.
→˓pvwatts_dc_power.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.
→˓rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.
→˓normalization.sapm_dc_power.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.
→˓t_step_nanoseconds.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.
→˓trapz_aggregate.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.soiling.rst,
→˓C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.soiling.
→˓soiling_srr.rst, C:
→˓\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.soiling.srr_
→˓analysis.rst
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 4 source files that are out of date
updating environment: 33 added, 0 changed, 0 removed
reading sources... [100%] readme_link
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done

(continues on next page)

72 Chapter 7. Documentation Contents

RdTools, Release 2.0.5+0.g2249ae5.dirty

(continued from previous page)

writing output... [100%] readme_link
generating indices... genindex py-modindex
writing additional pages... search
copying images... [100%] ../build/doctrees/nbsphinx/example_33_2.png
copying static files... done
copying extra files... done
dumping search index in English (code: en) ... done
dumping object inventory... done
build succeeded.

The HTML pages are in build\html.

If you get an error like Pandoc wasn't found, you can install it with conda:

conda install -c conda-forge pandoc

The built documentation should be in rdtools/docs/sphinx/build and opening index.html with a web
browser will display it.

7.4.6 Contributing

Community participation is welcome! New contributions should be based on the development branch as the
master branch is used only for releases.

RdTools follows the PEP 8 style guide. We recommend setting up your text editor to automatically highlight style
violations because it’s easy to miss some issues (trailing whitespace, etc) otherwise.

Additionally, our documentation is built in part from docstrings in the source code. These docstrings must be in
NumpyDoc format to be rendered correctly in the documentation.

Finally, all code should be tested. Some older tests in RdTools use the unittest module, but new tests should all use
pytest.

7.4. Developer Notes 73

https://www.python.org/dev/peps/pep-0008/
https://numpydoc.readthedocs.io/en/latest/format.html

RdTools, Release 2.0.5+0.g2249ae5.dirty

74 Chapter 7. Documentation Contents

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

75

RdTools, Release 2.0.5+0.g2249ae5.dirty

76 Chapter 8. Indices and tables

Python Module Index

r
rdtools.aggregation, 38
rdtools.availability, 37
rdtools.clearsky_temperature, 38
rdtools.degradation, 36
rdtools.filtering, 37
rdtools.normalization, 37
rdtools.plotting, 38
rdtools.soiling, 36

77

RdTools, Release 2.0.5+0.g2249ae5.dirty

78 Python Module Index

Index

Symbols
__init__() (rdtools.availability.AvailabilityAnalysis

method), 50
__init__() (rdtools.soiling.SRRAnalysis method), 45

A
aggregation_insol() (in module rd-

tools.aggregation), 58
annual_soiling_ratios() (in module rd-

tools.soiling), 44
availability_summary_plots() (in module rd-

tools.plotting), 62
AvailabilityAnalysis (class in rd-

tools.availability), 47

C
check_series_frequency() (in module rd-

tools.normalization), 58
clip_filter() (in module rdtools.filtering), 51
csi_filter() (in module rdtools.filtering), 51

D
degradation_classical_decomposition()

(in module rdtools.degradation), 39
degradation_ols() (in module rd-

tools.degradation), 40
degradation_summary_plots() (in module rd-

tools.plotting), 60
degradation_year_on_year() (in module rd-

tools.degradation), 40
delta_index() (in module rdtools.normalization), 58

E
energy_cumulative_corrected (rd-

tools.availability.AvailabilityAnalysis at-
tribute), 49

energy_expected_rescaled (rd-
tools.availability.AvailabilityAnalysis at-
tribute), 48

energy_from_power() (in module rd-
tools.normalization), 53

error_info (rdtools.availability.AvailabilityAnalysis
attribute), 49

G
get_clearsky_tamb() (in module rd-

tools.clearsky_temperature), 59

I
interpolate() (in module rdtools.normalization), 54
irradiance_rescale() (in module rd-

tools.normalization), 54

L
loss_subsystem (rd-

tools.availability.AvailabilityAnalysis at-
tribute), 48

loss_system (rdtools.availability.AvailabilityAnalysis
attribute), 48

loss_total (rdtools.availability.AvailabilityAnalysis
attribute), 48

M
monthly_soiling_rates() (in module rd-

tools.soiling), 43

N
normalize_with_expected_power() (in mod-

ule rdtools.normalization), 55
normalize_with_pvwatts() (in module rd-

tools.normalization), 55
normalize_with_sapm() (in module rd-

tools.normalization), 56
normalized_filter() (in module rdtools.filtering),

52

O
outage_info (rdtools.availability.AvailabilityAnalysis

attribute), 49

79

RdTools, Release 2.0.5+0.g2249ae5.dirty

P
plot() (rdtools.availability.AvailabilityAnalysis

method), 50
poa_filter() (in module rdtools.filtering), 52
power_expected_rescaled (rd-

tools.availability.AvailabilityAnalysis at-
tribute), 48

pvwatts_dc_power() (in module rd-
tools.normalization), 57

R
rdtools.aggregation (module), 38
rdtools.availability (module), 37
rdtools.clearsky_temperature (module), 38
rdtools.degradation (module), 36
rdtools.filtering (module), 37
rdtools.normalization (module), 37
rdtools.plotting (module), 38
rdtools.soiling (module), 36
reporting_mask (rd-

tools.availability.AvailabilityAnalysis at-
tribute), 48

results (rdtools.availability.AvailabilityAnalysis at-
tribute), 48

run() (rdtools.availability.AvailabilityAnalysis
method), 50

run() (rdtools.soiling.SRRAnalysis method), 45

S
sapm_dc_power() (in module rdtools.normalization),

57
soiling_interval_plot() (in module rd-

tools.plotting), 61
soiling_monte_carlo_plot() (in module rd-

tools.plotting), 61
soiling_rate_histogram() (in module rd-

tools.plotting), 62
soiling_srr() (in module rdtools.soiling), 41
SRRAnalysis (class in rdtools.soiling), 45

T
tcell_filter() (in module rdtools.filtering), 52

80 Index

	Degradation and Soiling
	Degradation
	Soiling

	Availability
	Install RdTools using pip
	Usage and examples
	Citing RdTools
	References
	Documentation Contents
	Examples
	API reference
	RdTools Change Log
	Developer Notes

	Indices and tables
	Python Module Index
	Index

