

    
      
          
            
  

[image: _images/logo_horizontal_highres.png]

RdTools Overview

RdTools is an open-source library to support reproducible technical analysis of
time series data from photovoltaic energy systems. The library aims to provide
best practice analysis routines along with the building blocks for users to
tailor their own analyses.
Current applications include the evaluation of PV production over several years to obtain
rates of performance degradation and soiling loss. They also include the capability to
analyze systems for system- and subsystem-level availability. RdTools can handle
both high frequency (hourly or better) or low frequency (daily, weekly,
etc.) datasets. Best results are obtained with higher frequency data.

Full examples are worked out in the example notebooks in the
example notebook.

To report issues, contribute code, or suggest improvements to this
documentation, visit the RdTools development repository on github [https://github.com/NREL/rdtools].


Degradation and Soiling

Both degradation and soiling analyses are based on normalized yield, similar to performance
index. Usually, this is computed at the daily level although other aggregation periods are
supported. A typical analysis of soiling and degradation contains the following:


	Import and preliminary calculations


	Normalize data using a performance metric


	Filter data that creates bias


	Aggregate data


	Analyze aggregated data to estimate the degradation rate and/or
soiling loss




Steps 1 and 2 may be accomplished with the clearsky workflow (see the
example notebook) which can help eliminate problems from irradiance sensor
drift.

[image: RdTools workflow diagram]

Degradation

The preferred method for degradation rate estimation is the year-on-year
(YOY) approach (Jordan 2018), available in degradation.degradation_year_on_year().
The YOY calculation yields in a distribution of degradation rates, the
central tendency of which is the most representative of the true
degradation. The width of the distribution provides information about
the uncertainty in the estimate via a bootstrap calculation. The
example notebook uses the output of
degradation.degradation_year_on_year() to visualize the calculation.

[image: RdTools degradation results plot]
Two workflows are available for system performance ratio calculation,
and illustrated in an example notebook. The sensor-based approach
assumes that site irradiance and temperature sensors are calibrated and
in good repair. Since this is not always the case, a 'clear-sky'
workflow is provided that is based on modeled temperature and
irradiance. Note that site irradiance data is still required to identify
clear-sky conditions to be analyzed. In many cases, the 'clear-sky'
analysis can identify conditions of instrument errors or irradiance
sensor drift, such as in the above analysis.

The clear-sky analysis tends to provide less stable results than sensor-based
analysis when details such as filtering are changed. We generally recommend
that the clear-sky analysis be used as a check on the sensor-based results,
rather than as a stand-alone analysis.




Soiling

Soiling can be estimated with the stochastic rate and recovery (SRR)
method (Deceglie 2018). This method works well when soiling patterns
follow a "sawtooth" pattern, a linear decline followed by a sharp
recovery associated with natural or manual cleaning.
soiling.soiling_srr() performs the calculation and returns the P50
insolation-weighted soiling ratio, confidence interval, and additional
information (soiling_info) which includes a summary of the soiling
intervals identified, soiling_info['soiling_interval_summary']. This
summary table can, for example, be used to plot a histogram of the
identified soiling rates for the dataset.

[image: RdTools soiling results plot]





Availability

Evaluating system availability can be confounded by data loss from interrupted
datalogger or system communications. RdTools implements two methods
(Anderson & Blumenthal 2020) of distinguishing nuisance communication
interruptions from true production outages
with the availability.AvailabilityAnalysis class. In addition to
classifying data outages, it estimates lost production and calculates
energy-weighted system availability.

[image: RdTools availability analysis plot]



Install RdTools using pip

RdTools can be installed automatically into Python from PyPI using the
command line:

pip install rdtools





Alternatively it can be installed manually using the command line:


	Download a release [https://github.com/NREL/rdtools/releases] (Or to work with a development version, clone
or download the rdtools repository).


	Navigate to the repository: cd rdtools


	Install via pip: pip install .




On some systems installation with pip can fail due to problems
installing requirements. If this occurs, the requirements specified in
setup.py may need to be separately installed (for example by using
conda) before installing rdtools.

For more detailed instructions, see the Developer Notes page.

RdTools currently is tested on Python 3.6+.




Usage and examples

Full workflow examples are found in the notebooks in example notebook.
The examples are designed to work with python 3.7. For a consistent
experience, we recommend installing the packages and versions documented
in docs/notebook_requirements.txt. This can be achieved in your
environment by first installing RdTools as described above, then running
pip install -r docs/notebook_requirements.txt from the base
directory.

The following functions are used for degradation and soiling analysis:

import rdtools





The most frequently used functions are:

normalization.normalize_with_expected_power(pv, power_expected, poa_global,
                                            pv_input='power')
  '''
  Inputs: Pandas time series of raw power or energy, expected power, and
     plane of array irradiance.
  Outputs: Pandas time series of normalized energy and POA insolation
  '''





filtering.poa_filter(poa_global); filtering.tcell_filter(temperature_cell);
filtering.clip_filter(power_ac); filtering.normalized_filter(energy_normalized);
filtering.csi_filter(poa_global_measured, poa_global_clearsky);
  '''
  Inputs: Pandas time series of raw data to be filtered.
  Output: Boolean mask where `True` indicates acceptable data
  '''





aggregation.aggregation_insol(energy_normalized, insolation, frequency='D')
  '''
  Inputs: Normalized energy and insolation
  Output: Aggregated data, weighted by the insolation.
  '''





degradation.degradation_year_on_year(energy_normalized)
  '''
  Inputs: Aggregated, normalized, filtered time series data
  Outputs: Tuple: `yoy_rd`: Degradation rate
    `yoy_ci`: Confidence interval `yoy_info`: associated analysis data
  '''





soiling.soiling_srr(energy_normalized_daily, insolation_daily)
  '''
  Inputs: Daily aggregated, normalized, filtered time series data for normalized performance and insolation
  Outputs: Tuple: `sr`: Insolation-weighted soiling ratio
    `sr_ci`: Confidence interval `soiling_info`: associated analysis data
  '''





availability.AvailabilityAnalysis(power_system, power_subsystem,
                                  energy_cumulative, power_expected)
  '''
  Inputs: Pandas time series system and subsystem power and energy data
  Outputs: DataFrame of production loss and availability metrics
  '''








Citing RdTools

The underlying workflow of RdTools has been published in several places.
If you use RdTools in a published work, please cite the following as
appropriate:


	D. Jordan, C. Deline, S. Kurtz, G. Kimball, M. Anderson, "Robust PV
Degradation Methodology and Application", IEEE Journal of
Photovoltaics, 8(2) pp. 525-531, 2018
‌‌


	M. G. Deceglie, L. Micheli and M. Muller, "Quantifying Soiling Loss
Directly From PV Yield," in IEEE Journal of Photovoltaics, 8(2),
pp. 547-551, 2018


	K. Anderson and R. Blumenthal, "Overcoming Communications Outages in
Inverter Downtime Analysis", 2020 IEEE 47th Photovoltaic Specialists
Conference (PVSC)."
‌‌


	RdTools, version x.x.x, https://github.com/NREL/rdtools,
https://doi.org/10.5281/zenodo.1210316


	Be sure to include the version number used in your analysis!











References


	The clear sky temperature calculation,
clearsky_temperature.get_clearsky_tamb(), uses data from images
created by Jesse Allen, NASA’s Earth Observatory using data courtesy
of the MODIS Land Group.



	https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTD_CLIM_M


	https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTN_CLIM_M











Other useful references which may also be consulted for degradation rate
methodology include:


	D. C. Jordan, M. G. Deceglie, S. R. Kurtz, "PV degradation
methodology comparison — A basis for a standard", in 43rd IEEE
Photovoltaic Specialists Conference, Portland, OR, USA, 2016, DOI:
10.1109/PVSC.2016.7749593.


	Jordan DC, Kurtz SR, VanSant KT, Newmiller J, Compendium of
Photovoltaic Degradation Rates, Progress in Photovoltaics: Research
and Application, 2016, 24(7), 978 - 989.


	D. Jordan, S. Kurtz, PV Degradation Rates – an Analytical Review,
Progress in Photovoltaics: Research and Application, 2013, 21(1), 12
- 29.


	E. Hasselbrink, M. Anderson, Z. Defreitas, M. Mikofski, Y.-C.Shen, S.
Caldwell, A. Terao, D. Kavulak, Z. Campeau, D. DeGraaff, "Validation
of the PVLife model using 3 million module-years of live site data",
39th IEEE Photovoltaic Specialists Conference, Tampa, FL, USA, 2013,
p. 7 – 13, DOI: 10.1109/PVSC.2013.6744087.












Documentation Contents



	Degradation and Soiling
	0: Import and preliminary calculations

	1: Normalize

	2: Filter

	3: Aggregate

	4: Degradation calculation

	5: Soiling calculations

	Clear sky workflow

	Clear Sky 0: Preliminary Calculations

	Clear Sky 1: Normalize

	Clear Sky 2: Filter

	Clear Sky 3: Aggregate

	Clear Sky 4: Degradation Calculation





	Inverter Downtime
	Create a test dataset

	System availability analysis

	Other use cases





	API Reference
	Submodules

	Degradation

	Soiling

	System Availability

	Filtering

	Normalization

	Aggregation

	Clear-Sky Temperature

	Plotting





	Change Log
	v2.0.1 (October 30, 2020)

	v2.0.0 (October 20, 2020)

	v1.2.3 (April 12, 2020)

	v1.2.2 (October 12, 2018)

	v1.2.1 (October 12, 2018)

	v1.2.0 (March 30, 2018)

	v1.1.3 (December 6, 2017)

	v1.1.2 (November 6, 2017)

	v1.1.1 (November 1, 2017)

	v1.1.0 (September 30, 2017)





	Developer Notes
	Installing RdTools source code

	Installing RdTools dependencies

	Running the test suite

	Building documentation locally

	Contributing












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  


Degradation and soiling example with clearsky workflow

This jupyter notebook is intended to the RdTools analysis workflow. In addition, the notebook demonstrates the effects of changes in the workflow. For a consistent experience, we recommend installing the specific versions of packages used to develop this notebook. This can be achieved in your environment by running pip install -r requirements.txt followed by pip install -r docs/notebook_requirements.txt from the base directory. (RdTools must also be separately installed.) These
environments and examples are tested with Python 3.7.

The calculations consist of several steps illustrated here:

	Import and preliminary calculations


	Normalize data using a performance metric


	Filter data that creates bias


	Aggregate data


	Analyze aggregated data to estimate the degradation rate


	Analyze aggregated data to estimate the soiling loss



After demonstrating these steps using sensor data, a modified version of the workflow is illustrated using modeled clear sky irradiance and temperature. The results from the two methods are compared at the end.

This notebook works with data from the NREL PVDAQ [4] NREL x-Si #1 system. Note that because this system does not experience significant soiling, the dataset contains a synthesized soiling signal for use in the soiling section of the example. This notebook automatically downloads and locally caches the dataset used in this example. The data can also be found on the DuraMAT Datahub (https://datahub.duramat.org/dataset/pvdaq-time-series-with-soiling-signal).


[1]:






from datetime import timedelta
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pvlib
import rdtools
%matplotlib inline








[2]:






#Update the style of plots
import matplotlib
matplotlib.rcParams.update({'font.size': 12,
                           'figure.figsize': [4.5, 3],
                           'lines.markeredgewidth': 0,
                           'lines.markersize': 2
                           })
# Register time series plotting in pandas > 1.0
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()








[3]:






# Set the random seed for numpy to ensure consistent results
np.random.seed(0)








0: Import and preliminary calculations

This section prepares the data necessary for an rdtools calculation. The first step of the rdtools workflow is normalization, which requires a time series of energy yield, a time series of cell temperature, and a time series of irradiance, along with some metadata (see Step 1: Normalize)

The following section loads the data, adjusts units where needed, and renames the critical columns. The ambient temperature sensor data source is converted into estimated cell temperature. This dataset already has plane-of-array irradiance data, so no transposition is necessary.

A common challenge is handling datasets with and without daylight savings time. Make sure to specify a pytz timezone that does or does not include daylight savings time as appropriate for your dataset.

The steps of this section may change depending on your data source or the system being considered. Transposition of irradiance and modeling of cell temperature are generally outside the scope of rdtools. A variety of tools for these calculations are available in pvlib [https://github.com/pvlib/pvlib-python].


[4]:






# Import the example data
file_url = ('https://datahub.duramat.org/dataset/a49bb656-7b36-'
            '437a-8089-1870a40c2a7d/resource/5059bc22-640d-4dd4'
            '-b7b1-1e71da15be24/download/pvdaq_system_4_2010-2016'
            '_subset_soilsignal.csv')
cache_file = 'PVDAQ_system_4_2010-2016_subset_soilsignal.pickle'

try:
    df = pd.read_pickle(cache_file)
except FileNotFoundError:
    df = pd.read_csv(file_url, index_col=0, parse_dates=True)
    df.to_pickle(cache_file)

df = df.rename(columns = {
    'ac_power':'power_ac',
    'wind_speed': 'wind_speed',
    'ambient_temp': 'Tamb',
    'poa_irradiance': 'poa',
})

# Specify the Metadata
meta = {"latitude": 39.7406,
        "longitude": -105.1774,
        "timezone": 'Etc/GMT+7',
        "gamma_pdc": -0.005,
        "azimuth": 180,
        "tilt": 40,
        "power_dc_rated": 1000.0,
        "temp_model_params":
        pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_polymer']}

df.index = df.index.tz_localize(meta['timezone'])

loc = pvlib.location.Location(meta['latitude'], meta['longitude'], tz = meta['timezone'])
sun = loc.get_solarposition(df.index)

# There is some missing data, but we can infer the frequency from
# the first several data points
freq = pd.infer_freq(df.index[:10])

# Then set the frequency of the dataframe.
# It is recommended not to up- or downsample at this step
# but rather to use interpolate to regularize the time series
# to its dominant or underlying frequency. Interpolate is not
# generally recommended for downsampling in this application.
df = rdtools.interpolate(df, freq)

# Calculate cell temperature
df['Tcell'] = pvlib.temperature.sapm_cell(df.poa, df.Tamb,
                                          df.wind_speed, **meta['temp_model_params'])

# plot the AC power time series
fig, ax = plt.subplots(figsize=(4,3))
ax.plot(df.index, df.power_ac, 'o', alpha=0.01)
ax.set_ylim(0,1500)
fig.autofmt_xdate()
ax.set_ylabel('AC Power (W)');
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1: Normalize

Data normalization is achieved with rdtools.normalize_with_expected_power(). This function can be used to normalize to any modeled or expected power. Note that realized PV output can be given as energy, rather than power, by using an optional key word argument.


[5]:






# Calculate the expected power with a simple PVWatts DC model
modeled_power = pvlib.pvsystem.pvwatts_dc(df['poa'], df['Tcell'], meta['power_dc_rated'],
                                          meta['gamma_pdc'], 25.0 )

# Calculate the normalization, the function also returns the relevant insolation for
# each point in the normalized PV energy timeseries
normalized, insolation = rdtools.normalize_with_expected_power(df['power_ac'],
                                                               modeled_power,
                                                               df['poa'])

df['normalized'] = normalized
df['insolation'] = insolation

# Plot the normalized power time series
fig, ax = plt.subplots()
ax.plot(normalized.index, normalized, 'o', alpha = 0.05)
ax.set_ylim(0,2)
fig.autofmt_xdate()
ax.set_ylabel('Normalized energy');












[image: _images/rd_example_7_0.png]







2: Filter

Data filtering is used to exclude data points that represent invalid data, create bias in the analysis, or introduce significant noise.

It can also be useful to remove outages and outliers. Sometimes outages appear as low but non-zero yield. Automatic functions for outage detection are not yet included in rdtools. However, this example does filter out data points where the normalized energy is less than 1%. System-specific filters should be implemented by the analyst if needed.


[6]:






# Calculate a collection of boolean masks that can be used
# to filter the time series
normalized_mask = rdtools.normalized_filter(df['normalized'])
poa_mask = rdtools.poa_filter(df['poa'])
tcell_mask = rdtools.tcell_filter(df['Tcell'])
# Note: This clipping mask may be disabled when you are sure the system is not
# experiencing clipping due to high DC/AC ratio
clip_mask = rdtools.clip_filter(df['power_ac'])

# filter the time series and keep only the columns needed for the
# remaining steps
filtered = df[normalized_mask & poa_mask & tcell_mask & clip_mask]
filtered = filtered[['insolation', 'normalized']]

fig, ax = plt.subplots()
ax.plot(filtered.index, filtered.normalized, 'o', alpha = 0.05)
ax.set_ylim(0,2)
fig.autofmt_xdate()
ax.set_ylabel('Normalized energy');
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3: Aggregate

Data is aggregated with an irradiance weighted average. This can be useful, for example with daily aggregation, to reduce the impact of high-error data points in the morning and evening.


[7]:






daily = rdtools.aggregation_insol(filtered.normalized, filtered.insolation,
                                  frequency = 'D')

fig, ax = plt.subplots()
ax.plot(daily.index, daily, 'o', alpha = 0.1)
ax.set_ylim(0,2)
fig.autofmt_xdate()
ax.set_ylabel('Normalized energy');
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4: Degradation calculation

Data is then analyzed to estimate the degradation rate representing the PV system behavior. The results are visualized and statistics are reported, including the 68.2% confidence interval, and the P95 exceedance value.


[8]:






# Calculate the degradation rate using the YoY method
yoy_rd, yoy_ci, yoy_info = rdtools.degradation_year_on_year(daily, confidence_level=68.2)
# Note the default confidence_level of 68.2 is appropriate if you would like to
# report a confidence interval analogous to the standard deviation of a normal
# distribution. The size of the confidence interval is adjustable by setting the
# confidence_level variable.

# Visualize the results

degradation_fig = rdtools.degradation_summary_plots(
    yoy_rd, yoy_ci, yoy_info, daily,
    summary_title='Sensor-based degradation results',
    scatter_ymin=0.5, scatter_ymax=1.1,
    hist_xmin=-30, hist_xmax=45, bins=100
)
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In addition to the confidence interval, the year-on-year method yields an exceedance value (e.g. P95), the degradation rate that was exceeded (slower degradation) with a given probability level. The probability level is set via the exceedance_prob keyword in degradation_year_on_year.


[9]:






print('The P95 exceedance level is %.2f%%/yr' % yoy_info['exceedance_level'])













The P95 exceedance level is -0.63%/yr









5: Soiling calculations

This section illustrates how the aggregated data can be used to estimate soiling losses using the stochastic rate and recovery (SRR) method.¹ Since our example system doesn’t experience much soiling, we apply an artificially generated soiling signal, just for the sake of example.

¹ M. G. Deceglie, L. Micheli and M. Muller, “Quantifying Soiling Loss Directly From PV Yield,” IEEE Journal of Photovoltaics, vol. 8, no. 2, pp. 547-551, March 2018. doi: 10.1109/JPHOTOV.2017.2784682


[10]:






# Apply artificial soiling signal for example
# be sure to remove this for applications on real data,
# and proceed with analysis on `daily` instead of `soiled_daily`

soiling = df['soiling'].resample('D').mean()
soiled_daily = soiling*daily








[11]:






# Calculate the daily insolation, required for the SRR calculation
daily_insolation = filtered['insolation'].resample('D').sum()

# Perform the SRR calculation
from rdtools.soiling import soiling_srr
cl = 68.2
sr, sr_ci, soiling_info = soiling_srr(soiled_daily, daily_insolation,
                                      confidence_level=cl)













/Users/mdecegli/Documents/GitHub/rdtools/rdtools/soiling.py:15: UserWarning: The soiling module is currently experimental. The API, results, and default behaviors may change in future releases (including MINOR and PATCH releases) as the code matures.
  'The soiling module is currently experimental. The API, results, '







[12]:






print('The P50 insolation-weighted soiling ratio is %0.3f'%sr)













The P50 insolation-weighted soiling ratio is 0.945







[13]:






print('The %0.1f confidence interval for the insolation-weighted'
      ' soiling ratio is %0.3f–%0.3f'%(cl, sr_ci[0], sr_ci[1]))













The 68.2 confidence interval for the insolation-weighted soiling ratio is 0.939–0.951







[14]:






# Plot Monte Carlo realizations of soiling profiles
fig = rdtools.plotting.soiling_monte_carlo_plot(soiling_info, soiled_daily, profiles=200);













/Users/mdecegli/Documents/GitHub/rdtools/rdtools/plotting.py:151: UserWarning: The soiling module is currently experimental. The API, results, and default behaviors may change in future releases (including MINOR and PATCH releases) as the code matures.
  'The soiling module is currently experimental. The API, results, '
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[15]:






# Plot the slopes for "valid" soiling intervals identified,
# assuming perfect cleaning events
fig = rdtools.plotting.soiling_interval_plot(soiling_info, soiled_daily);













/Users/mdecegli/Documents/GitHub/rdtools/rdtools/plotting.py:211: UserWarning: The soiling module is currently experimental. The API, results, and default behaviors may change in future releases (including MINOR and PATCH releases) as the code matures.
  'The soiling module is currently experimental. The API, results, '
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[16]:






# View the first several rows of the soiling interval summary table
soiling_summary = soiling_info['soiling_interval_summary']
soiling_summary.head()








[16]:
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System availability example

This notebook shows example usage of the inverter availability functions. As with the degradation and soiling example, we recommend installing the specific versions of packages used to develop this notebook. This can be achieved in your environment by running pip install -r requirements.txt followed by pip install -r docs/notebook_requirements.txt from the base directory. (RdTools must also be separately installed.) These environments and examples are tested with Python 3.7.

RdTools currently implements two methods of quantifying system availability. The first method compares power measurements from inverters and the system meter to distinguish subsystem communication interruptions from true outage events. The second method determines the uncertainty bounds around an energy estimate of a total system outage and compares with true production calculated from a meter’s cumulative production measurements. The RdTools AvailabilityAnalysis class uses both methods to
quantify downtime loss.

These methods are described in K. Anderson and R. Blumenthal, “Overcoming Communications Outages in Inverter Downtime Analysis”, 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC).


[1]:






import rdtools
import pvlib

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt







Quantifying the production impact of inverter downtime events is complicated by gaps in a system’s historical data caused by communication interruptions. Although communication interruptions may prevent remote operation, they usually do not result in production loss. Accurate production loss estimates require the ability to distinguish true outages from communication interruptions.

The first method focuses on partial outages where some of a system’s inverters are reporting production and some are not. In these cases, the method examines the AC power measurements at the inverter and system meter level to classify each timestamp individually and estimate timeseries production loss. This level of granularity is made possible by comparing timeseries power measurements between inverters and the meter.


Create a test dataset

First we’ll generate a test dataset to demonstrate the method. This code block just puts together an artificial dataset to use for the analysis – feel free to skip ahead to where it gets plotted.


[2]:






def make_dataset():
    """
    Make an example dataset with several types of data outages for availability analysis.

    Returns
    -------
    df_reported : pd.DataFrame
        Simulated data as a data acquisition system would report it, including the
        effect of communication interruptions.
    df_secret : pd.DataFrame
        The secret true data of the system, not affected by communication
        interruptions.  Only used for comparison with the analysis output.
    expected_power : pd.Series
        An "expected" power signal for this hypothetical PV system, simulating a
        modeled power from satellite weather data or some other method.

    (This function creates instananeous data. SystemAvailability is technically designed
    to work with right-labeled averages. However, for the purposes of the example, the
    approximation is suitable.)
    """

    # generate a plausible clear-sky power signal
    times = pd.date_range('2019-01-01', '2019-01-12', freq='15min', tz='US/Eastern',
                          closed='left')
    location = pvlib.location.Location(40, -80)
    clearsky = location.get_clearsky(times, model='haurwitz')
    # just scale GHI to power for simplicity
    base_power = 2.5*clearsky['ghi']
    # but require a minimum irradiance to turn on, simulating start-up voltage
    base_power[clearsky['ghi'] < 20] = 0

    df_secret = pd.DataFrame({
        'inv1_power': base_power,
        'inv2_power': base_power * 1.5,
        'inv3_power': base_power * 0.66,
    })

    # set the expected_power to be pretty close to actual power,
    # but with some autocorrelated noise and a bias:
    expected_power = df_secret.sum(axis=1)
    np.random.seed(2020)
    N = len(times)
    expected_power *= 0.9 - (0.3 * np.sin(np.arange(0, N)/7 +
                             np.random.normal(0, 0.2, size=N)))

    # Add a few days of individual inverter outages:
    df_secret.loc['2019-01-03':'2019-01-05', 'inv2_power'] = 0
    df_secret.loc['2019-01-02', 'inv3_power'] = 0
    df_secret.loc['2019-01-07 00:00':'2019-01-07 12:00', 'inv1_power'] = 0

    # and a full system outage:
    full_outage_date = '2019-01-08'
    df_secret.loc[full_outage_date, :] = 0

    # calculate the system meter power and cumulative production,
    # including the effect of the outages:
    df_secret['meter_power'] = df_secret.sum(axis=1)
    interval_energy = rdtools.energy_from_power(df_secret['meter_power'])
    df_secret['meter_energy'] = interval_energy.cumsum()
    # fill the first NaN from the cumsum with 0
    df_secret['meter_energy'] = df_secret['meter_energy'].fillna(0)
    # add an offset to reflect previous production:
    df_secret['meter_energy'] += 5e5
    # calculate cumulative energy for an inverter as well:
    inv2_energy = rdtools.energy_from_power(df_secret['inv2_power'])
    df_secret['inv2_energy'] = inv2_energy.cumsum().fillna(0)

    # now that the "true" data is in place, let's add some communications interruptions:
    df_reported = df_secret.copy()
    # in full outages, we lose all the data:
    df_reported.loc[full_outage_date, :] = np.nan
    # add a communications interruption that overlaps with an inverter outage:
    df_reported.loc['2019-01-05':'2019-01-06', 'inv1_power'] = np.nan
    # and a communication outage that affects everything:
    df_reported.loc['2019-01-10', :] = np.nan

    return df_reported, df_secret, expected_power







Let’s visualize the dataset before analyzing it with RdTools. The dotted lines show the “true” data that wasn’t recorded by the datalogger because of interrupted communications.


[3]:






df, df_secret, expected_power = make_dataset()

fig, axes = plt.subplots(3, 1, sharex=True, figsize=(8,6))
colors = plt.rcParams['axes.prop_cycle'].by_key()['color'][:3]

# inverter power
df_secret[['inv1_power', 'inv2_power', 'inv3_power']].plot(ax=axes[0],
                                                           legend=False, ls=':',
                                                           color=colors)
df[['inv1_power', 'inv2_power', 'inv3_power']].plot(ax=axes[0], legend=False)
# meter power
df_secret['meter_power'].plot(ax=axes[1], ls=':', color=colors[0])
df['meter_power'].plot(ax=axes[1])
# meter cumulative energy
df_secret['meter_energy'].plot(ax=axes[2], ls=':', color=colors[0])
df['meter_energy'].plot(ax=axes[2])

axes[0].set_ylabel('Inverter Power [kW]')
axes[1].set_ylabel('Meter Power [kW]')
axes[2].set_ylabel('Cumulative\nMeter Energy [kWh]')
plt.show()












[image: _images/system_availability_example_5_0.png]




Note that the solid lines show the data that would be available in our example while the dotted lines show the true underlying behavior that we normally wouldn’t know.

If we hadn’t created this dataset ourselves, it wouldn’t necessarily be obvious why the meter shows low or no production on some days – maybe it was just cloudy weather, maybe it was a nuisance communication outage (broken cell modem power supply, for example), or maybe it was a true power outage. This example also shows how an inverter can appear to be offline while actually producing normally. For example, just looking at inverter power on the 5th, it appears that only the small inverter is
producing. However, the meter shows two inverters’ worth of production. Similarly, the 6th shows full meter production despite one inverter not reporting power. Using only the inverter-reported power would overestimate the production loss because of the communication interruption.




System availability analysis

Now we’ll hand this data off to RdTools for analysis:


[4]:






from rdtools.availability import AvailabilityAnalysis
aa = AvailabilityAnalysis(
    power_system=df['meter_power'],
    power_subsystem=df[['inv1_power', 'inv2_power', 'inv3_power']],
    energy_cumulative=df['meter_energy'],
    power_expected=expected_power,
)
# identify and classify outages, rolling up to daily metrics for this short dataset:
aa.run(rollup_period='D')













/Users/mdecegli/opt/anaconda3/envs/final_release_test/lib/python3.7/site-packages/rdtools/availability.py:18: UserWarning: The availability module is currently experimental. The API, results, and default behaviors may change in future releases (including MINOR and PATCH releases) as the code matures.
  'The availability module is currently experimental. The API, results, '






First, we can visualize the estimated power loss and outage information:


[5]:






fig = aa.plot()
fig.set_size_inches(16, 7)
fig.axes[1].legend(loc='upper left');













/Users/mdecegli/opt/anaconda3/envs/final_release_test/lib/python3.7/site-packages/rdtools/plotting.py:320: UserWarning: The availability module is currently experimental. The API, results, and default behaviors may change in future releases (including MINOR and PATCH releases) as the code matures.
  'The availability module is currently experimental. The API, results, '
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Examining the plot of estimated lost power, we can see that the estimated loss is roughly in proportion to the amount of offline capacity. In particular, the loss estimate is robust to mixed outage and communication interruption like on the 5th when only the smallest inverter is reporting production but the analysis correctly inferred that one of the other inverters is producing but not communicating.

RdTools also reports rolled-up production and availability metrics:


[6]:






pd.set_option('precision', 3)
aa.results








[6]:
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API reference


Submodules

RdTools is organized into submodules focused on different parts of the data
analysis workflow.







	degradation

	Functions for calculating the degradation rate of photovoltaic systems.



	soiling

	Functions for calculating soiling metrics from photovoltaic system data.



	availability

	Functions for detecting and quantifying production loss from photovoltaic system downtime events.



	filtering

	Functions for filtering and subsetting PV system data.



	normalization

	Functions for normalizing, rescaling, and regularizing PV system data.



	aggregation

	Functions for calculating weighted aggregates of PV system data.



	clearsky_temperature

	Functions for estimating clear-sky ambient temperature.



	plotting

	Functions for plotting degradation and soiling analysis results.









Degradation

Functions for calculating the degradation rate of photovoltaic systems.







	degradation_classical_decomposition(...[, ...])

	Estimate the trend of a timeseries using a classical decomposition approach (moving average) and calculate various statistics, including the result of a Mann-Kendall test and a Monte Carlo-derived confidence interval of slope.



	degradation_ols(energy_normalized[, ...])

	Estimate the trend of a timeseries using ordinary least-squares regression and calculate various statistics including a Monte Carlo-derived confidence interval of slope.



	degradation_year_on_year(energy_normalized)

	Estimate the trend of a timeseries using the year-on-year decomposition approach and calculate a Monte Carlo-derived confidence interval of slope.









Soiling

Functions for calculating soiling metrics from photovoltaic system data.

The soiling module is currently experimental. The API, results,
and default behaviors may change in future releases (including MINOR
and PATCH releases) as the code matures.







	soiling_srr(energy_normalized_daily, ...[, ...])

	Functional wrapper for SRRAnalysis.



	monthly_soiling_rates(soiling_interval_summary)

	Use Monte Carlo to calculate typical monthly soiling rates.



	annual_soiling_ratios(...[, confidence_level])

	Return annualized soiling ratios and associated confidence intervals based on stochastic soiling profiles from SRR.



	SRRAnalysis(energy_normalized_daily, ...[, ...])

	Class for running the stochastic rate and recovery (SRR) photovoltaic soiling loss analysis presented in Deceglie et al.



	SRRAnalysis.run([reps, day_scale, ...])

	Run the SRR method from beginning to end.









System Availability

Functions for detecting and quantifying production loss from photovoltaic
system downtime events.

The availability module is currently experimental. The API, results,
and default behaviors may change in future releases (including MINOR
and PATCH releases) as the code matures.







	AvailabilityAnalysis(power_system, ...)

	A class to perform system availability and loss analysis.



	AvailabilityAnalysis.run([low_threshold, ...])

	Run the availability analysis.



	AvailabilityAnalysis.plot()

	Create a figure summarizing the availability analysis results.









Filtering

Functions for filtering and subsetting PV system data.







	clip_filter(power_ac[, quantile])

	Filter data points likely to be affected by clipping with power greater than or equal to 99% of the quant quantile.



	csi_filter(poa_global_measured, ...[, threshold])

	Filtering based on clear-sky index (csi)



	poa_filter(poa_global[, poa_global_low, ...])

	Filter POA irradiance readings outside acceptable measurement bounds.



	tcell_filter(temperature_cell[, ...])

	Filter temperature readings outside acceptable measurement bounds.



	normalized_filter(energy_normalized[, ...])

	Select normalized yield between low_cutoff and high_cutoff









Normalization

Functions for normalizing, rescaling, and regularizing PV system data.







	energy_from_power(power[, target_frequency, ...])

	Returns a regular right-labeled energy time series in units of Wh per interval from a power time series.



	interpolate(time_series, target[, ...])

	Returns an interpolation of time_series, excluding times associated with gaps in each column of time_series longer than max_timedelta; NaNs are returned within those gaps.



	irradiance_rescale(irrad, irrad_sim[, ...])

	Attempt to rescale modeled irradiance to match measured irradiance on clear days.



	normalize_with_expected_power(pv, ...[, ...])

	Normalize PV power or energy based on expected PV power.



	normalize_with_pvwatts(energy, pvwatts_kws)

	Normalize system AC energy output given measured poa_global and meteorological data.



	normalize_with_sapm(energy, sapm_kws)

	
Deprecated since version 2.0.0.







	pvwatts_dc_power(poa_global, power_dc_rated)

	PVWatts v5 Module Model: DC power given effective poa poa_global, module nameplate power, and cell temperature.



	sapm_dc_power(pvlib_pvsystem, met_data)

	
Deprecated since version 2.0.0.







	delta_index(series)

	
Deprecated since version 2.0.0.







	check_series_frequency(series, ...)

	
Deprecated since version 2.0.0.













Aggregation

Functions for calculating weighted aggregates of PV system data.







	aggregation_insol(energy_normalized, insolation)

	Insolation weighted aggregation









Clear-Sky Temperature

Functions for estimating clear-sky ambient temperature.







	get_clearsky_tamb(times, latitude, longitude)

	Estimates the ambient temperature at latitude and longitude for the given times using a Gaussian rolling window.









Plotting

Functions for plotting degradation and soiling analysis results.







	degradation_summary_plots(yoy_rd, yoy_ci, ...)

	Create plots (scatter plot and histogram) that summarize degradation analysis results.



	soiling_monte_carlo_plot(soiling_info, ...)

	Create figure to visualize Monte Carlo of soiling profiles used in the SRR analysis.



	soiling_interval_plot(soiling_info, ...[, ...])

	Create figure to visualize valid soiling profiles used in the SRR analysis.



	soiling_rate_histogram(soiling_info[, bins])

	Create histogram of soiling rates found in the SRR analysis.



	availability_summary_plots(power_system, ...)

	Create a figure summarizing the availability analysis results.
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rdtools.degradation

Functions for calculating the degradation rate of photovoltaic systems.

Functions







	degradation_classical_decomposition(...[, ...])

	Estimate the trend of a timeseries using a classical decomposition approach (moving average) and calculate various statistics, including the result of a Mann-Kendall test and a Monte Carlo-derived confidence interval of slope.



	degradation_ols(energy_normalized[, ...])

	Estimate the trend of a timeseries using ordinary least-squares regression and calculate various statistics including a Monte Carlo-derived confidence interval of slope.



	degradation_year_on_year(energy_normalized)

	Estimate the trend of a timeseries using the year-on-year decomposition approach and calculate a Monte Carlo-derived confidence interval of slope.
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rdtools.soiling

Functions for calculating soiling metrics from photovoltaic system data.

The soiling module is currently experimental. The API, results,
and default behaviors may change in future releases (including MINOR
and PATCH releases) as the code matures.

Functions







	annual_soiling_ratios(...[, confidence_level])

	Return annualized soiling ratios and associated confidence intervals based on stochastic soiling profiles from SRR.



	monthly_soiling_rates(soiling_interval_summary)

	Use Monte Carlo to calculate typical monthly soiling rates.



	soiling_srr(energy_normalized_daily, ...[, ...])

	Functional wrapper for SRRAnalysis.






Classes







	SRRAnalysis(energy_normalized_daily, ...[, ...])

	Class for running the stochastic rate and recovery (SRR) photovoltaic soiling loss analysis presented in Deceglie et al.






Exceptions







	NoValidIntervalError

	raised when no valid rows appear in the result dataframe
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rdtools.availability

Functions for detecting and quantifying production loss from photovoltaic
system downtime events.

The availability module is currently experimental. The API, results,
and default behaviors may change in future releases (including MINOR
and PATCH releases) as the code matures.

Classes







	AvailabilityAnalysis(power_system, ...)

	A class to perform system availability and loss analysis.
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rdtools.filtering

Functions for filtering and subsetting PV system data.

Functions







	clip_filter(power_ac[, quantile])

	Filter data points likely to be affected by clipping with power greater than or equal to 99% of the quant quantile.



	csi_filter(poa_global_measured, ...[, threshold])

	Filtering based on clear-sky index (csi)



	normalized_filter(energy_normalized[, ...])

	Select normalized yield between low_cutoff and high_cutoff



	poa_filter(poa_global[, poa_global_low, ...])

	Filter POA irradiance readings outside acceptable measurement bounds.



	tcell_filter(temperature_cell[, ...])

	Filter temperature readings outside acceptable measurement bounds.
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rdtools.normalization

Functions for normalizing, rescaling, and regularizing PV system data.

Functions







	check_series_frequency(series, ...)

	
Deprecated since version 2.0.0.







	delta_index(series)

	
Deprecated since version 2.0.0.







	energy_from_power(power[, target_frequency, ...])

	Returns a regular right-labeled energy time series in units of Wh per interval from a power time series.



	interpolate(time_series, target[, ...])

	Returns an interpolation of time_series, excluding times associated with gaps in each column of time_series longer than max_timedelta; NaNs are returned within those gaps.



	irradiance_rescale(irrad, irrad_sim[, ...])

	Attempt to rescale modeled irradiance to match measured irradiance on clear days.



	normalize_with_expected_power(pv, ...[, ...])

	Normalize PV power or energy based on expected PV power.



	normalize_with_pvwatts(energy, pvwatts_kws)

	Normalize system AC energy output given measured poa_global and meteorological data.



	normalize_with_sapm(energy, sapm_kws)

	
Deprecated since version 2.0.0.







	pvwatts_dc_power(poa_global, power_dc_rated)

	PVWatts v5 Module Model: DC power given effective poa poa_global, module nameplate power, and cell temperature.



	sapm_dc_power(pvlib_pvsystem, met_data)

	
Deprecated since version 2.0.0.










Exceptions







	ConvergenceError

	Rescale optimization did not converge
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rdtools.aggregation

Functions for calculating weighted aggregates of PV system data.

Functions







	aggregation_insol(energy_normalized, insolation)

	Insolation weighted aggregation
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rdtools.clearsky_temperature

Functions for estimating clear-sky ambient temperature.

Functions







	get_clearsky_tamb(times, latitude, longitude)

	Estimates the ambient temperature at latitude and longitude for the given times using a Gaussian rolling window.
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rdtools.plotting

Functions for plotting degradation and soiling analysis results.

Functions







	availability_summary_plots(power_system, ...)

	Create a figure summarizing the availability analysis results.



	degradation_summary_plots(yoy_rd, yoy_ci, ...)

	Create plots (scatter plot and histogram) that summarize degradation analysis results.



	soiling_interval_plot(soiling_info, ...[, ...])

	Create figure to visualize valid soiling profiles used in the SRR analysis.



	soiling_monte_carlo_plot(soiling_info, ...)

	Create figure to visualize Monte Carlo of soiling profiles used in the SRR analysis.



	soiling_rate_histogram(soiling_info[, bins])

	Create histogram of soiling rates found in the SRR analysis.
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rdtools.degradation.degradation_classical_decomposition


	
rdtools.degradation.degradation_classical_decomposition(energy_normalized, confidence_level=68.2)

	Estimate the trend of a timeseries using a classical decomposition approach
(moving average) and calculate various statistics, including the result of
a Mann-Kendall test and a Monte Carlo-derived confidence interval of slope.


	Parameters

	
	energy_normalized (pd.Series) -- Daily or lower frequency time series of normalized system ouput.
Must be regular time series.


	confidence_level (float, default 68.2) -- The size of the confidence interval to return, in percent.






	Returns

	
	Rd_pct (float) -- Estimated degradation relative to the year 0 system capacity [%/year]


	Rd_CI (np.array) -- The calculated confidence interval bounds.


	calc_info (dict) -- A dict that contains slope, intercept,
root mean square error of regression ('rmse'), standard error
of the slope ('slope_stderr'), intercept ('intercept_stderr'),
and least squares RegressionResults object ('ols_results'),
pandas series for the annual rolling mean ('series'), and
Mann-Kendall test trend ('mk_test_trend')
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rdtools.degradation.degradation_ols


	
rdtools.degradation.degradation_ols(energy_normalized, confidence_level=68.2)

	Estimate the trend of a timeseries using ordinary least-squares regression
and calculate various statistics including a Monte Carlo-derived confidence
interval of slope.


	Parameters

	
	energy_normalized (pd.Series) -- Daily or lower frequency time series of normalized system ouput.


	confidence_level (float, default 68.2) -- The size of the confidence interval to return, in percent.






	Returns

	
	Rd_pct (float) -- Estimated degradation relative to the year 0 system capacity [%/year]


	Rd_CI (np.array) -- The calculated confidence interval bounds.


	calc_info (dict) -- A dict that contains slope, intercept,
root mean square error of regression ('rmse'), standard error
of the slope ('slope_stderr'), intercept ('intercept_stderr'),
and least squares RegressionResults object ('ols_results')
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rdtools.degradation.degradation_year_on_year


	
rdtools.degradation.degradation_year_on_year(energy_normalized, recenter=True, exceedance_prob=95, confidence_level=68.2)

	Estimate the trend of a timeseries using the year-on-year decomposition
approach and calculate a Monte Carlo-derived confidence interval of slope.


	Parameters

	
	energy_normalized (pd.Series) -- Daily or lower frequency time series of normalized system ouput.


	recenter (bool, default True) -- Specify whether data is internally recentered to normalized yield
of 1 based on first year median. If False, Rd_pct is calculated
assuming energy_normalized is passed already normalized to the
year 0 system capacity.


	exceedance_prob (float, default 95) -- The probability level to use for exceedance value calculation,
in percent.


	confidence_level (float, default 68.2) -- The size of the confidence interval to return, in percent.






	Returns

	
	Rd_pct (float) -- Estimated degradation relative to the year 0 median system capacity [%/year]


	confidence_interval (np.array) -- confidence interval (size specified by confidence_level) of
degradation rate estimate


	calc_info (dict) --


	YoY_values - pandas series of right-labeled year on year slopes


	renormalizing_factor - float of value used to recenter data


	exceedance_level - the degradation rate that was outperformed with
probability of exceedance_prob
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rdtools.soiling.soiling_srr


	
rdtools.soiling.soiling_srr(energy_normalized_daily, insolation_daily, reps=1000, precipitation_daily=None, day_scale=14, clean_threshold='infer', trim=False, method='half_norm_clean', clean_criterion='shift', precip_threshold=0.01, min_interval_length=2, exceedance_prob=95.0, confidence_level=68.2, recenter=True, max_relative_slope_error=500.0, max_negative_step=0.05)

	Functional wrapper for SRRAnalysis. Perform
the stochastic rate and recovery soiling loss calculation. Based on the
methods presented in Deceglie et al. JPV 8(2) p547 2018.


	Parameters

	
	energy_normalized_daily (pd.Series) -- Daily performance metric (i.e. performance index, yield, etc.)
Alternatively, the soiling ratio output of a soiling sensor (e.g. the
photocurrent ratio between matched dirty and clean PV reference cells).
In either case, data should be insolation-weighted daily aggregates.


	insolation_daily (pd.Series) -- Daily plane-of-array insolation corresponding to
energy_normalized_daily. Arbitrary units.


	reps (int, default 1000) -- number of Monte Carlo realizations to calculate


	precipitation_daily (pd.Series, default None) -- Daily total precipitation. Units ambiguous but should be the same as
precip_threshold. Note default behavior of precip_threshold. (Ignored
if clean_criterion='shift'.)


	day_scale (int, default 14) -- The number of days to use in rolling median for cleaning detection,
and the maximum number of days of missing data to tolerate in a valid
interval


	clean_threshold (float or 'infer', default 'infer') -- The fractional positive shift in rolling median for cleaning detection.
Or specify 'infer' to automatically use outliers in the shift as the
threshold.


	trim (bool, default False) -- Whether to trim (remove) the first and last soiling intervals to avoid
inclusion of partial intervals


	method (str, default 'half_norm_clean') -- How to treat the recovery of each cleaning event


	'random_clean' - a random recovery between 0-100%


	'perfect_clean' - each cleaning event returns the performance metric
to 1


	
	'half_norm_clean'(default) - The starting point of each interval is taken

	randomly from a half normal distribution with its mode (mu) at 1 and
its sigma equal to 1/3 * (1-b) where b is the intercept of the fit to
the interval.












	clean_criterion ({'precip_and_shift', 'precip_or_shift', 'precip', 'shift'}                 default 'shift') -- The method of partitioning the dataset into soiling intervals.
If 'precip_and_shift', rolling median shifts must coincide
with precipitation to be a valid cleaning event.
If 'precip_or_shift', rolling median shifts and precipitation
events are each sufficient on their own to be a cleaning event.
If 'shift', only rolling median shifts are treated as cleaning events.
If 'precip', only precipitation events are treated as cleaning events.


	precip_threshold (float, default 0.01) -- The daily precipitation threshold for defining precipitation cleaning events.
Units must be consistent with precip.


	min_interval_length (int, default 2) -- The minimum duration, in days, for an interval to be considered
valid.  Cannot be less than 2 (days).


	exceedance_prob (float, default 95.0) -- the probability level to use for exceedance value calculation in
percent


	confidence_level (float, default 68.2) -- the size of the confidence interval to return, in percent


	recenter (bool, default True) -- specify whether data is centered to normalized yield of 1 based on
first year median


	max_relative_slope_error (float, default 500.0) -- the maximum relative size of the slope confidence interval for an
interval to be considered valid (percentage).


	max_negative_step (float, default 0.05) -- The maximum magnitude of negative discrete steps allowed in an interval
for the interval to be considered valid (units of normalized
performance metric).






	Returns

	
	insolation_weighted_soiling_ratio (float) -- P50 insolation weighted soiling ratio based on stochastic rate and
recovery analysis


	confidence_interval (np.array) -- confidence interval (size specified by confidence_level) of
degradation rate estimate


	calc_info (dict) --


	'renormalizing_factor' - value used to recenter data


	'exceedance_level' - the insolation-weighted soiling ratio that
was outperformed with probability of exceedance_prob


	'stochastic_soiling_profiles' - List of Pandas series
corresponding to the Monte Carlo realizations of soiling ratio
profiles


	'soiling_ratio_perfect_clean' - Pandas series of the soiling
ratio during valid soiling intervals assuming perfect cleaning
and P50 slopes


	'soiling_interval_summary' - Pandas dataframe summarizing the
soiling intervals identified. The columns of the dataframe are
as follows:







	Column Name

	Description





	'start'

	Start timestamp of the soiling interval



	'end'

	End timestamp of the soiling interval



	'soiling_rate'

	P50 Soiling rate for interval, in day^−1
Negative value indicates soiling is
occurring. E.g. a rate of −0.01 indicates 1%
soiling loss per day.



	'soiling_rate_low'

	Low edge of confidence interval for soiling
rate for interval, in day^−1



	'soiling_rate_high'

	High edge of confidence interval for
soiling rate for interval, in day^−1



	'inferred_start_loss'

	Estimated performance metric at the start
of the interval



	'inferred_end_loss'

	Estimated performance metric at the end
of the interval



	'length'

	Number of days in the interval



	'valid'

	Whether the interval meets the criteria to
be treated as a valid soiling interval
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rdtools.soiling.monthly_soiling_rates


	
rdtools.soiling.monthly_soiling_rates(soiling_interval_summary, min_interval_length=14, max_relative_slope_error=500.0, reps=100000, confidence_level=68.2)

	Use Monte Carlo to calculate typical monthly soiling rates. Samples possible
soiling rates from soiling rate confidence intervals associated with soiling
intervals assuming a uniform distribution. Soiling intervals get samples
proportionally to their overlap with each calendar month.


	Parameters

	
	soiling_interval_summary (pd.DataFrame) -- DataFrame describing soiling intervals. Typically from
soiling_info['soiling_interval_summary'] obtained with
rdtools.soiling.soiling_srr() or
rdtools.soiling.SRRAnalysis.run() Must have columns
soiling_rate_high, soiling_rate_low, soiling_rate, length, valid,
start, and end.


	min_interval_length (int, default 14) -- The minimum number of days a soiling interval must contain to be
included in the calculation. Similar to the same parameter in soiling_srr()
and SRRAnalysis.run() but with a more conservative default value as a
starting point for monthly soiling rate analyses.


	max_relative_slope_error (float, default 500.0) -- The maximum relative size of the slope confidence interval for an
interval to be included in the calculation (percentage).


	reps (int, default 100000) -- The number of Monte Carlo samples to take for each month.


	confidence_level (float, default 68.2) -- The size of the confidence interval, as a percentage, to use in determining the
upper and lower quantiles reported in the returned DataFrame. (The median is
always included in the result.)






	Returns

	DataFrame describing monthly soiling rates.







	Column Name

	Description





	'month'

	Integer month, January (1) to December (12)



	'soiling_rate_median'

	The median soiling rate for the month over
the entire dataset, in units of day^−1.
Negative value indicates soiling is occurring.
E.g. a rate of −0.01 indicates 1% soiling loss
per day.



	'soiling_rate_low'

	The lower edge of the confidence interval
for the monthly soiling rate in units of
day^−1



	'soiling_rate_high'

	The upper edge of the confidence interval
for the monthly soiling rate in units of
day^−1



	'interval_count'

	The number of soiling intervals contributing
to the monthly calculation. If only a few
intervals contribute, the confidence interval
is likely to underestimate the true uncertainty.










	Return type

	pd.DataFrame
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rdtools.soiling.annual_soiling_ratios


	
rdtools.soiling.annual_soiling_ratios(stochastic_soiling_profiles, insolation_daily, confidence_level=68.2)

	Return annualized soiling ratios and associated confidence intervals based
on stochastic soiling profiles from SRR. Note that each year may be affected
by previous years' profiles for all SRR cleaning assumptions (i.e. method) except
perfect_clean.


	Parameters

	
	stochastic_soiling_profiles (list) -- List of pd.Series representing profile realizations from the SRR monte carlo.
Typically soiling_interval_summary['stochastic_soiling_profiles'] obtained with
rdtools.soiling.soiling_srr() or rdtools.soiling.SRRAnalysis.run()


	insolation_daily (pd.Series) -- Daily plane-of-array insolation with DatetimeIndex. Arbitrary units.


	confidence_level (float, default 68.2) -- The size of the confidence interval to use in determining the upper and lower
quantiles reported in the returned DataFrame. (The median is always included in
the result.)






	Returns

	DataFrame describing annual soiling rates.







	Column Name

	Description





	'year'

	Calendar year



	'soiling_ratio_median'

	The median insolation-weighted soiling
ratio for the year



	'soiling_ratio_low'

	The lower edge of the confidence interval
for insolation-weighted soiling ratio for
the year



	'soiling_ratio_high'

	The upper edge of the confidence interval
for insolation-weighted soiling ratio for
the year










	Return type

	pd.DataFrame
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rdtools.soiling.SRRAnalysis


	
class rdtools.soiling.SRRAnalysis(energy_normalized_daily, insolation_daily, precipitation_daily=None)

	Class for running the stochastic rate and recovery (SRR) photovoltaic
soiling loss analysis presented in Deceglie et al. JPV 8(2) p547 2018


	Parameters

	
	energy_normalized_daily (pd.Series) -- Daily performance metric (i.e. performance index, yield, etc.)
Alternatively, the soiling ratio output of a soiling sensor (e.g. the
photocurrent ratio between matched dirty and clean PV reference cells).
In either case, data should be insolation-weighted daily aggregates.


	insolation_daily (pd.Series) -- Daily plane-of-array insolation corresponding to
energy_normalized_daily. Arbitrary units.


	precipitation_daily (pd.Series, default None) -- Daily total precipitation. (Ignored if clean_criterion='shift' in
subsequent calculations.)









	
__init__(energy_normalized_daily, insolation_daily, precipitation_daily=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(energy_normalized_daily, ...[, ...])

	Initialize self.



	run([reps, day_scale, clean_threshold, ...])

	Run the SRR method from beginning to end.














          

      

      

    

  

  
    
    rdtools.soiling.SRRAnalysis.run
    

    

    
 
  

    
      
          
            
  


rdtools.soiling.SRRAnalysis.run


	
SRRAnalysis.run(reps=1000, day_scale=14, clean_threshold='infer', trim=False, method='half_norm_clean', clean_criterion='shift', precip_threshold=0.01, min_interval_length=2, exceedance_prob=95.0, confidence_level=68.2, recenter=True, max_relative_slope_error=500.0, max_negative_step=0.05)

	Run the SRR method from beginning to end.  Perform the stochastic rate
and recovery soiling loss calculation. Based on the methods presented
in Deceglie et al. "Quantifying Soiling Loss Directly From PV Yield"
JPV 8(2) p547 2018.


	Parameters

	
	reps (int, default 1000) -- number of Monte Carlo realizations to calculate


	day_scale (int, default 14) -- The number of days to use in rolling median for cleaning detection,
and the maximum number of days of missing data to tolerate in a
valid interval


	clean_threshold (float or 'infer', default 'infer') -- The fractional positive shift in rolling median for cleaning
detection. Or specify 'infer' to automatically use outliers in the
shift as the threshold.


	trim (bool, default False) -- Whether to trim (remove) the first and last soiling intervals to
avoid inclusion of partial intervals


	method (str, default 'half_norm_clean') -- How to treat the recovery of each cleaning event:


	'random_clean' - a random recovery between 0-100%


	'perfect_clean' - each cleaning event returns the performance
metric to 1


	'half_norm_clean' - The starting point of each interval is taken
randomly from a half normal distribution with its mode (mu) at 1 and
its sigma equal to 1/3 * (1-b) where b is the intercept of the fit to
the interval.







	clean_criterion ({'precip_and_shift', 'precip_or_shift', 'precip', 'shift'}                 default 'shift') -- The method of partitioning the dataset into soiling intervals.
If 'precip_and_shift', rolling median shifts must coincide
with precipitation to be a valid cleaning event.
If 'precip_or_shift', rolling median shifts and precipitation
events are each sufficient on their own to be a cleaning event.
If 'shift', only rolling median shifts are treated as cleaning events.
If 'precip', only precipitation events are treated as cleaning events.


	precip_threshold (float, default 0.01) -- The daily precipitation threshold for defining precipitation cleaning events.
Units must be consistent with self.precipitation_daily


	min_interval_length (int, default 2) -- The minimum duration for an interval to be considered
valid.  Cannot be less than 2 (days).


	exceedance_prob (float, default 95.0) -- The probability level to use for exceedance value calculation in
percent


	confidence_level (float, default 68.2) -- The size of the confidence interval to return, in percent


	recenter (bool, default True) -- Specify whether data is centered to normalized yield of 1 based on
first year median


	max_relative_slope_error (float, default 500) -- the maximum relative size of the slope confidence interval for an
interval to be considered valid (percentage).


	max_negative_step (float, default 0.05) -- The maximum magnitude of negative discrete steps allowed in an
interval for the interval to be considered valid (units of
normalized performance metric).






	Returns

	
	insolation_weighted_soiling_ratio (float) -- P50 insolation-weighted soiling ratio based on stochastic rate and
recovery analysis


	confidence_interval (np.array) -- confidence interval (size specified by confidence_level) of
insolation-weighted soiling ratio


	calc_info (dict) --


	'renormalizing_factor' - value used to recenter data


	'exceedance_level' - the insolation-weighted soiling ratio that
was outperformed with probability of exceedance_prob


	'stochastic_soiling_profiles' - List of Pandas series
corresponding to the Monte Carlo realizations of soiling ratio
profiles


	'soiling_ratio_perfect_clean' - Pandas series of the soiling
ratio during valid soiling intervals assuming perfect cleaning
and P50 slopes


	'soiling_interval_summary' - Pandas dataframe summarizing the
soiling intervals identified. The columns of the dataframe are
as follows:







	Column Name

	Description





	'start'

	Start timestamp of the soiling interval



	'end'

	End timestamp of the soiling interval



	'soiling_rate'

	P50 Soiling rate for interval, in day^−1
Negative value indicates soiling is
occurring. E.g. a rate of −0.01 indicates 1%
soiling loss per day.



	'soiling_rate_low'

	Low edge of confidence interval for soiling
rate for interval, in day^−1



	'soiling_rate_high'

	High edge of confidence interval for
soiling rate for interval, in day^−1



	'inferred_start_loss'

	Estimated performance metric at the start
of the interval



	'inferred_end_loss'

	Estimated performance metric at the end
of the interval



	'length'

	Number of days in the interval



	'valid'

	Whether the interval meets the criteria to
be treated as a valid soiling interval
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rdtools.availability.AvailabilityAnalysis


	
class rdtools.availability.AvailabilityAnalysis(power_system, power_subsystem, energy_cumulative, power_expected)

	A class to perform system availability and loss analysis.

This class follows the analysis procedure described in 1, and
implements two distinct algorithms. One for partial (subsystem) outages
and one for system-wide outages. The AvailabilityAnalysis.run()
method executes both algorithms and combines their results.

The input timeseries don't need to be in any particular set of units as
long as all power and energy units are consistent, with energy units
being the hourly-integrated power (e.g., kW and kWh). The units of the
analysis outputs will match the inputs.


	Parameters

	
	power_system (pd.Series) -- Timeseries total system power. In the typical case, this is meter
power data. Should be a right-labeled interval average (this is what
is typically recorded in many DAS).


	power_subsystem (pd.DataFrame) -- Timeseries power data, one column per subsystem. In the typical case,
this is inverter AC power data. Each column is assumed to represent
a subsystem, so no extra columns may be included. The index must
match power_system. Should be a right-labeled interval average.


	energy_cumulative (pd.Series) -- Timeseries cumulative energy data for the entire system (e.g. meter).
These values must be recorded at the device itself (rather than summed
by a downstream device like a datalogger or DAS provider) to preserve
its integrity across communication interruptions. Units must match
power integrated to hourly energy (e.g. if power is in kW then
energy must be in kWh).


	power_expected (pd.Series) -- Expected system power data with the same index as the measured data.
This can be modeled from on-site weather measurements if instruments
are well calibrated and there is no risk of data gaps. However, because
full system outages often cause weather data to be lost as well, it may
be more useful to use data from an independent weather station or
satellite-based weather provider. Should be a right-labeled interval
average.









	
results

	Rolled-up production, loss, and availability metrics. The index is
a datetime index of the period passed to
AvailabilityAnalysis.run(). The columns of the dataframe are
as follows:







	Column Name

	Description





	'lost_production'

	Production loss from outages. Units match the
input power units (e.g. if power is given in
kW, 'lost_production' will be in kWh).



	'actual_production'

	System energy production. Same units as
'lost_production'.



	'availability'

	Energy-weighted system availability as a
fraction (0-1).







	Type

	pd.DataFrame










	
loss_system

	Estimated timeseries lost power from system outages.


	Type

	pd.Series










	
loss_subsystem

	Estimated timeseries lost power from subsystem outages.


	Type

	pd.Series










	
loss_total

	Estimated total lost power from outages.


	Type

	pd.Series










	
reporting_mask

	Boolean mask indicating whether subsystems appear online or not.


	Type

	pd.DataFrame










	
power_expected_rescaled

	Expected power rescaled to better match system power during periods
where the system is performing normally.


	Type

	pd.Series










	
energy_expected_rescaled

	Interval expected energy calculated from power_expected_rescaled.


	Type

	pd.Series










	
energy_cumulative_corrected

	Cumulative system production after filling in data gaps from outages
with estimated production.


	Type

	pd.Series










	
error_info

	Records about the error between expected power and actual power.


	Type

	pd.DataFrame










	
interp_lower, interp_upper

	Functions to estimate the uncertainty interval bounds of expected
production based on outage length.


	Type

	function










	
outage_info

	Records about each detected system outage, one row per
outage. The primary columns of interest are type, which can be
either 'real' or 'comms' and reports whether the outage
was determined to be a real outage with lost production or just a
communications interruption with no production impact; and loss
which reports the estimated production loss for the outage. The
columns are as follows:







	Column Name

	Description





	'start'

	Timestamp of the outage start.



	'end'

	Timestamp of the outage end.



	'duration'

	Length of the outage (i.e.
outage_info['end'] - outage_info['start']
).



	'intervals'

	Total count of data intervals contained in
the outage.



	'daylight_intervals'

	Count of data intervals contained in the
outage occurring during the day.



	'error_lower'

	Lower error bound as a fraction of expected
energy.



	'error_upper'

	Upper error bound as a fraction of expected
energy.



	'energy_expected'

	Total expected production for the outage
duration.



	'energy_start'

	System cumulative production at the outage
start.



	'energy_end'

	System cumulative production at the outage
end.



	'energy_actual'

	System production during the outage (i.e.,
outage_info['energy_end'] -
outage_info['energy_start']).



	'ci_lower'

	Lower bound for the expected energy
confidence interval.



	'ci_upper'

	Lower bound for the expected energy
confidence interval.



	'type'

	Type of the outage ('real or 'comms').



	'loss'

	Estimated production loss.







	Type

	pd.DataFrame









Notes

This class's ability to detect short-duration outages is limited by
the resolution of the system data. For instance, 15-minute averages
would not be able to resolve the rapid power cycling of an intermittent
inverter. Additionally, the loss at the edges of an outage may be
underestimated because of masking by the interval averages.

This class expects outages to be represented in the timeseries by NaN,
zero, or very low values. If your DAS does not record data from outages
(e.g., a three-hour outage results in three hours of omitted timestamps),
you should insert those missing rows before using this analysis.

References


	1

	Anderson K. and Blumenthal R. "Overcoming communications outages in
inverter downtime analysis", 2020 IEEE 47th Photovoltaic Specialists
Conference (PVSC).






	
__init__(power_system, power_subsystem, energy_cumulative, power_expected)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(power_system, power_subsystem, ...)

	Initialize self.



	plot()

	Create a figure summarizing the availability analysis results.



	run([low_threshold, relative_sizes, ...])

	Run the availability analysis.
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rdtools.availability.AvailabilityAnalysis.run


	
AvailabilityAnalysis.run(low_threshold=None, relative_sizes=None, power_system_limit=None, quantiles=(0.01, 0.99), rollup_period='M')

	Run the availability analysis.


	Parameters

	
	low_threshold (float or pd.Series, optional) -- An optional threshold used to naively classify subsystems as
online. If the threshold is a scalar, it will be used for all
subsystems. For subsystems with different capacities, a pandas
Series may be passed with index values matching the columns in
power_subsystem. Units must match power_subsystem and
power_system. If omitted, the limit is calculated for each
subsystem independently as 0.001 times the 99th percentile of its
power data.


	relative_sizes (dict or pd.Series, optional) -- The production capacity of each subsystem, normalized by the mean
subsystem capacity. If not specified, it will be estimated from
power data.


	power_system_limit (float or pd.Series, optional) -- Maximum allowable system power in the same units as the input
power timeseries. This parameter is used to account
for cases where online subsystems can partially mitigate the loss
of an offline subsystem, for example a system with a plant
controller and dynamic inverter setpoints. This constraint is
only applied to the subsystem loss calculation.


	quantiles (2-element tuple, default (0.01, 0.99)) -- The quantiles of the error distribution used for the expected
energy confidence interval. The lower bound is used to classify
outages as either (1) a simple communication interruption with
no production loss or (2) a power outage with an associated
production loss estimate.


	rollup_period (pandas DateOffset or alias, default 'M') -- The period on which to roll up losses and calculate availability.
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rdtools.availability.AvailabilityAnalysis.plot


	
AvailabilityAnalysis.plot()

	Create a figure summarizing the availability analysis results. The
analysis must be run using the run() method before using
this method.


	Returns

	fig



	Return type

	matplotlib Figure
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rdtools.filtering.clip_filter


	
rdtools.filtering.clip_filter(power_ac, quantile=0.98)

	Filter data points likely to be affected by clipping
with power greater than or equal to 99% of the quant
quantile.


	Parameters

	
	power_ac (pd.Series) -- AC power in Watts


	quantile (float, default 0.98) -- Value for upper threshold quantile






	Returns

	Boolean Series of whether the given measurement is below 99% of the
quantile filter.



	Return type

	pd.Series
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rdtools.filtering.csi_filter


	
rdtools.filtering.csi_filter(poa_global_measured, poa_global_clearsky, threshold=0.15)

	Filtering based on clear-sky index (csi)


	Parameters

	
	poa_global_measured (pd.Series) -- Plane of array irradiance based on measurments


	poa_global_clearsky (pd.Series) -- Plane of array irradiance based on a clear sky model


	threshold (float, default 0.15) -- threshold for filter






	Returns

	Boolean Series of whether the clear-sky index is within the threshold
around 1.



	Return type

	pd.Series
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rdtools.filtering.poa_filter


	
rdtools.filtering.poa_filter(poa_global, poa_global_low=200, poa_global_high=1200)

	Filter POA irradiance readings outside acceptable measurement bounds.


	Parameters

	
	poa_global (pd.Series) -- POA irradiance measurements.


	poa_global_low (float, default 200) -- The lower bound of acceptable values.


	poa_global_high (float, default 1200) -- The upper bound of acceptable values.






	Returns

	Boolean Series of whether the given measurement is within acceptable
bounds.



	Return type

	pd.Series
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rdtools.filtering.tcell_filter


	
rdtools.filtering.tcell_filter(temperature_cell, temperature_cell_low=-50, temperature_cell_high=110)

	Filter temperature readings outside acceptable measurement bounds.


	Parameters

	
	temperature_cell (pd.Series) -- Cell temperature measurements.


	temperature_cell_low (float, default -50) -- The lower bound of acceptable values.


	temperature_cell_high (float, default 110) -- The upper bound of acceptable values.






	Returns

	Boolean Series of whether the given measurement is within acceptable
bounds.



	Return type

	pd.Series
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rdtools.filtering.normalized_filter


	
rdtools.filtering.normalized_filter(energy_normalized, energy_normalized_low=0.01, energy_normalized_high=None)

	Select normalized yield between low_cutoff and high_cutoff


	Parameters

	
	energy_normalized (pd.Series) -- Normalized energy measurements.


	energy_normalized_low (float, default 0.01) -- The lower bound of acceptable values.


	energy_normalized_high (float, optional) -- The upper bound of acceptable values.






	Returns

	Boolean Series of whether the given measurement is within acceptable
bounds.



	Return type

	pd.Series
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rdtools.normalization.energy_from_power(power, target_frequency=None, max_timedelta=None, power_type='right_labeled')

	Returns a regular right-labeled energy time series in units of Wh per
interval from a power time series. For instantaneous timeseries, a
trapezoidal sum is used. For right labeled time series, a rectangular sum
is used. NaN is filled where the gap between input data points exceeds
max_timedelta. Power_series should
be given in Watts.


	Parameters

	
	power (pd.Series) -- Time series of power in Watts


	target_frequency (DatetimeOffset or frequency string, default None) -- The frequency of the energy time series to be returned.
If omitted, use the median timestep of power, or if power has
fewer than two elements, use ``power.index.freq`.


	max_timedelta (pd.Timedelta, default None) -- The maximum allowed gap between power measurements. If the gap between
consecutive power measurements exceeds max_timedelta, NaN will be
returned for that interval. If omitted, max_timedelta is set
internally to the median time delta in power. Ignored when power
has fewer than two elements.


	power_type ({'right_labeled', 'instantaneous'}) -- The labeling convention used in power. Default: 'right_labeled'






	Returns

	right-labeled energy in Wh per interval



	Return type

	pd.Series
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rdtools.normalization.interpolate


	
rdtools.normalization.interpolate(time_series, target, max_timedelta=None, warning_threshold=0.1)

	Returns an interpolation of time_series, excluding times associated with
gaps in each column of time_series longer than max_timedelta; NaNs are
returned within those gaps.


	Parameters

	
	time_series (pd.Series, pd.DataFrame) -- Original values to be used in generating the interpolation


	target (pd.DatetimeIndex, DatetimeOffset, or frequency string) -- 
	If DatetimeIndex: the index onto which the interpolation is to be
made


	If DatetimeOffset or frequency string: the frequency at which to
resample and interpolate







	max_timedelta (pd.Timedelta, default None) -- The maximum allowed gap between values in time_series. Times
associated with gaps longer than max_timedelta are excluded from the
output. If omitted, max_timedelta is set internally to two times
the median time delta in time_series.


	warning_threshold (float, default 0.1) -- The fraction of data exclusion above which a warning is raised. With
the default value of 0.1, a warning will be raised if the fraction
of data excluded because of data gaps longer than max_timedelta is
above than 10%.






	Returns

	



	Return type

	pd.Series or pd.DataFrame (matching type of time_series) with DatetimeIndex






Note

Timezone information in the DatetimeIndexes is handled automatically,
however both time_series and target should be time zone aware or they
should both be time zone naive.
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rdtools.normalization.irradiance_rescale


	
rdtools.normalization.irradiance_rescale(irrad, irrad_sim, max_iterations=100, method='iterative', convergence_threshold=1e-06)

	Attempt to rescale modeled irradiance to match measured irradiance on
clear days.


	Parameters

	
	irrad (pd.Series) -- measured irradiance time series


	irrad_sim (pd.Series) -- modeled/simulated irradiance time series


	max_iterations (int, default 100) -- The maximum number of times to attempt rescale optimization.
Ignored if method = 'single_opt'


	method (str, default 'iterative') -- The calculation method to use. 'single_opt' implements the
irradiance_rescale of rdtools v1.1.3 and earlier. 'iterative'
implements a more stable calculation that may yield different results
from the single_opt method.


	convergence_threshold (float, default 1e-6) -- The acceptable iteration-to-iteration scaling factor difference to
determine convergence.  If the threshold is not reached after
max_iterations, raise
rdtools.normalization.ConvergenceError.
Must be greater than zero.  Only used if method=='iterative'.






	Returns

	Rescaled modeled irradiance time series



	Return type

	pd.Series
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rdtools.normalization.normalize_with_expected_power


	
rdtools.normalization.normalize_with_expected_power(pv, power_expected, poa_global, pv_input='power')

	Normalize PV power or energy based on expected PV power.


	Parameters

	
	pv (pd.Series) -- Right-labeled time series PV energy or power. If energy, should not
be cumulative, but only for preceding time step. Type (energy or power)
must be specified in the pv_input parameter.


	power_expected (pd.Series) -- Right-labeled time series of expected PV power. (Note: Expected energy
is not supported.)


	poa_global (pd.Series) -- Right-labeled time series of plane-of-array irradiance associated with
expected_power


	pv_input ({'power' or 'energy'}) -- Specifies the type of input used for pv parameter. Default: 'power'






	Returns

	
	energy_normalized (pd.Series) -- Energy normalized based on power_expected


	insolation (pd.Series) -- Insolation associated with each normalized point
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rdtools.normalization.normalize_with_pvwatts


	
rdtools.normalization.normalize_with_pvwatts(energy, pvwatts_kws)

	Normalize system AC energy output given measured poa_global and
meteorological data. This method uses the PVWatts V5 module model.

Energy timeseries and poa_global timeseries can be different granularities.


	Parameters

	
	energy (pd.Series) -- Energy time series to be normalized in watt hours.
Must be a right-labeled regular time series.


	pvwatts_kws (dict) -- Dictionary of parameters used in the pvwatts_dc_power function.  See
Other Parameters.






	Other Parameters

	
	poa_global (pd.Series) -- Total effective plane of array irradiance.


	power_dc_rated (float) -- Rated DC power of array in watts


	temperature_cell (pd.Series, optional) -- Measured or derived cell temperature [degrees Celsius].
Time series assumed to be same frequency as poa_global.
If omitted, the temperature term will be ignored.


	poa_global_ref (float, default 1000) -- Reference irradiance at standard test condition [W/m**2].


	temperature_cell_ref (float, default 25) -- Reference temperature at standard test condition [degrees Celsius].


	gamma_pdc (float, default None) -- Linear array efficiency temperature coefficient [1 / degree Celsius].
If omitted, the temperature term will be ignored.









Note

All series are assumed to be right-labeled, meaning that the recorded
value at a given timestamp refers to the previous time interval




	Returns

	
	energy_normalized (pd.Series) -- Energy divided by PVWatts DC energy.


	insolation (pd.Series) -- Insolation associated with each normalized point
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rdtools.normalization.normalize_with_sapm


	
rdtools.normalization.normalize_with_sapm(energy, sapm_kws)

	
Deprecated since version 2.0.0: The normalize_with_sapm function was deprecated in rdtools 2.0.0 and will be removed in 3.0.0. Use normalize_with_expected_power instead.



Normalize system AC energy output given measured met_data and
meteorological data. This method relies on the Sandia Array Performance
Model (SAPM) to compute the effective DC energy using measured irradiance,
ambient temperature, and wind speed.

Energy timeseries and met_data timeseries can be different granularities.


	Parameters

	
	energy (pd.Series) -- Energy time series to be normalized  in watt hours.
Must be a right-labeled regular time series.


	sapm_kws (dict) -- Dictionary of parameters required for sapm_dc_power function. See
Other Parameters.






	Other Parameters

	
	pvlib_pvsystem (pvlib-python LocalizedPVSystem object) -- Object contains orientation, geographic coordinates, equipment
constants (including DC rated power in watts).  The object must also
specify either the temperature_model_parameters attribute or both
racking_model and module_type to infer the model parameters.


	met_data (pd.DataFrame) -- Measured met_data, ambient temperature, and wind speed.  Expected
column names are ['DNI', 'GHI', 'DHI', 'Temperature', 'Wind Speed']









Note

All series are assumed to be right-labeled, meaning that the recorded
value at a given timestamp refers to the previous time interval




	Returns

	
	energy_normalized (pd.Series) -- Energy divided by Sandia Model DC energy.


	insolation (pd.Series) -- Insolation associated with each normalized point
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rdtools.normalization.pvwatts_dc_power


	
rdtools.normalization.pvwatts_dc_power(poa_global, power_dc_rated, temperature_cell=None, poa_global_ref=1000, temperature_cell_ref=25, gamma_pdc=None)

	PVWatts v5 Module Model: DC power given effective poa poa_global, module
nameplate power, and cell temperature. This function differs from the PVLIB
implementation by allowing cell temperature to be an optional parameter.


	Parameters

	
	poa_global (pd.Series) -- Total effective plane of array irradiance.


	power_dc_rated (float) -- Rated DC power of array in watts


	temperature_cell (pd.Series, optional) -- Measured or derived cell temperature [degrees Celsius].
Time series assumed to be same frequency as poa_global.
If omitted, the temperature term will be ignored.


	poa_global_ref (float, default 1000) -- Reference irradiance at standard test condition [W/m**2].


	temperature_cell_ref (float, default 25) -- Reference temperature at standard test condition [degrees Celsius].


	gamma_pdc (float, default None) -- Linear array efficiency temperature coefficient [1 / degree Celsius].
If omitted, the temperature term will be ignored.









Note

All series are assumed to be right-labeled, meaning that the recorded
value at a given timestamp refers to the previous time interval




	Returns

	power_dc -- DC power in watts determined by PVWatts v5 equation.



	Return type

	pd.Series
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rdtools.normalization.sapm_dc_power


	
rdtools.normalization.sapm_dc_power(pvlib_pvsystem, met_data)

	
Deprecated since version 2.0.0: The sapm_dc_power function was deprecated in rdtools 2.0.0 and will be removed in 3.0.0. Use normalize_with_expected_power instead.



Use Sandia Array Performance Model (SAPM) and PVWatts to compute the
effective DC power using measured irradiance, ambient temperature, and wind
speed. Effective irradiance and cell temperature are calculated with SAPM,
and DC power with PVWatts.


	Parameters

	
	pvlib_pvsystem (pvlib-python LocalizedPVSystem object) -- Object contains orientation, geographic coordinates, equipment
constants (including DC rated power in watts).  The object must also
specify either the temperature_model_parameters attribute or both
racking_model and module_type attributes to infer the temperature model parameters.


	met_data (pd.DataFrame) -- Measured irradiance components, ambient temperature, and wind speed.
Expected met_data DataFrame column names:
['DNI', 'GHI', 'DHI', 'Temperature', 'Wind Speed']









Note

All series are assumed to be right-labeled, meaning that the recorded
value at a given timestamp refers to the previous time interval




	Returns

	
	power_dc (pd.Series) -- DC power in watts derived using Sandia Array Performance Model and
PVWatts.


	effective_poa (pd.Series) -- Effective irradiance calculated with SAPM
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rdtools.normalization.delta_index


	
rdtools.normalization.delta_index(series)

	
Deprecated since version 2.0.0: The _delta_index function was deprecated in rdtools 2.0.0 and will be removed in 3.0.0.



Takes a pandas series with a DatetimeIndex as input and
returns (time step sizes, average time step size) in hours


	Parameters

	series (pd.Series) -- A pandas timeseries



	Returns

	
	deltas (pd.Series) -- A timeseries representing the timestep sizes of series


	mean (float) -- The average timestep


















          

      

      

    

  

  
    
    rdtools.normalization.check_series_frequency
    

    

    
 
  

    
      
          
            
  


rdtools.normalization.check_series_frequency


	
rdtools.normalization.check_series_frequency(series, series_description)

	
Deprecated since version 2.0.0: The _check_series_frequency function was deprecated in rdtools 2.0.0 and will be removed in 3.0.0.



Returns the inferred frequency of a pandas series, raises ValueError
using series_description if it can't.


	Parameters

	
	series (pd.Series) -- The timeseries to infer the frequency of.


	series_description (str) -- The description to use when raising an error.






	Returns

	freq -- The inferred index frequency



	Return type

	pandas Offsets string
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rdtools.aggregation.aggregation_insol


	
rdtools.aggregation.aggregation_insol(energy_normalized, insolation, frequency='D')

	Insolation weighted aggregation


	Parameters

	
	energy_normalized (pd.Series) -- Normalized energy time series


	insolation (pd.Series) -- Time series of insolation associated with each energy_normalized
point


	frequency (Pandas offset string, default 'D') -- Target frequency at which to aggregate






	Returns

	aggregated -- Insolation weighted average, aggregated at frequency



	Return type

	pd.Series
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rdtools.clearsky_temperature.get_clearsky_tamb


	
rdtools.clearsky_temperature.get_clearsky_tamb(times, latitude, longitude, window_size=40, gauss_std=20)

	Estimates the ambient temperature at latitude and longitude for the given
times using a Gaussian rolling window.


	Parameters

	
	times (pd.DatetimeIndex) -- A pandas DatetimeIndex, localized to local time


	latitude (float) -- Coordinates in decimal degrees.


	longitude (float) -- Coordinates in decimal degrees. Positive is east of the prime meridian.


	window_size (int, default 40) -- The window size in days to use when calculating rolling averages.


	gauss_std (int, default 20) -- The standard deviation in days to use for the Gaussian rolling window.






	Returns

	clear sky ambient temperature



	Return type

	pd.Series





Notes

Uses data from images created by Jesse Allen, NASA's Earth Observatory
using data courtesy of the MODIS Land Group.


	https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTD_CLIM_M


	https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTN_CLIM_M
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rdtools.plotting.degradation_summary_plots


	
rdtools.plotting.degradation_summary_plots(yoy_rd, yoy_ci, yoy_info, normalized_yield, hist_xmin=None, hist_xmax=None, bins=None, scatter_ymin=None, scatter_ymax=None, plot_color=None, summary_title=None, scatter_alpha=0.5)

	Create plots (scatter plot and histogram) that summarize degradation
analysis results.


	Parameters

	
	yoy_rd (float) -- rate of relative performance change in %/yr


	yoy_ci (float) -- one-sigma confidence interval of degradation rate estimate


	yoy_info (dict) -- a dictionary with keys:


	YoY_values - pandas series of right-labeled year on year slopes


	renormalizing_factor - float value used to recenter data


	exceedance_level - the degradation rate that was outperformed with
a probability given by the exceedance_prob parameter in
the degradation.degradation_year_on_year()







	normalized_yield (pd.Series) -- PV yield data that is normalized, filtered and aggregated


	hist_xmin (float, optional) -- lower limit of x-axis for the histogram


	hist_xmax (float, optional) -- upper limit of x-axis for the histogram


	bins (int, optional) -- Number of bins in the histogram distribution. If omitted,
len(yoy_values) // 40 will be used


	scatter_ymin (float, optional) -- lower limit of y-axis for the scatter plot


	scatter_ymax (float, optional) -- upper limit of y-axis for the scatter plot


	plot_color (str, optional) -- color of the summary plots


	summary_title (str, optional) -- overall title for summary plots


	scatter_alpha (float, default 0.5) -- Transparency of the scatter plot









Note

It should be noted that the yoy_rd, yoy_ci and yoy_info are the outputs
from degradation.degradation_year_on_year().




	Returns

	fig -- Figure with two axes



	Return type

	matplotlib Figure
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rdtools.plotting.soiling_monte_carlo_plot


	
rdtools.plotting.soiling_monte_carlo_plot(soiling_info, normalized_yield, point_alpha=0.5, profile_alpha=0.05, ymin=None, ymax=None, profiles=None, point_color=None, profile_color='C1')

	Create figure to visualize Monte Carlo of soiling profiles used in the SRR
analysis.


Warning

The soiling module is currently experimental. The API, results,
and default behaviors may change in future releases (including MINOR
and PATCH releases) as the code matures.




	Parameters

	
	soiling_info (dict) -- soiling_info returned by soiling.SRRAnalysis.run() or
soiling.soiling_srr().


	normalized_yield (pd.Series) -- PV yield data that is normalized, filtered and aggregated.


	point_alpha (float, default 0.5) -- tranparency of the normalized_yield points


	profile_alpha (float, default 0.05) -- transparency of each profile


	ymin (float, optional) -- minimum y coordinate


	ymax (float, optional) -- maximum y coordinate


	profiles (int, optional) -- the number of stochastic profiles to plot.  If not specified, plot
all profiles.


	point_color (str, optional) -- color of the normalized_yield points


	profile_color (str, default 'C1') -- color of the stochastic profiles






	Returns

	fig



	Return type

	matplotlib Figure
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rdtools.plotting.soiling_interval_plot


	
rdtools.plotting.soiling_interval_plot(soiling_info, normalized_yield, point_alpha=0.5, profile_alpha=1, ymin=None, ymax=None, point_color=None, profile_color=None)

	Create figure to visualize valid soiling profiles used in the SRR analysis.


Warning

The soiling module is currently experimental. The API, results,
and default behaviors may change in future releases (including MINOR
and PATCH releases) as the code matures.




	Parameters

	
	soiling_info (dict) -- soiling_info returned by soiling.SRRAnalysis.run() or
soiling.soiling_srr().


	normalized_yield (pd.Series) -- PV yield data that is normalized, filtered and aggregated.


	point_alpha (float, default 0.5) -- tranparency of the normalized_yield points


	profile_alpha (float, default 1) -- transparency of soiling profile


	ymin (float, optional) -- minimum y coordinate


	ymax (float, optional) -- maximum y coordinate


	point_color (str, optional) -- color of the normalized_yield points


	profile_color (str, optional) -- color of the soiling intervals






	Returns

	fig



	Return type

	matplotlib Figure
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rdtools.plotting.soiling_rate_histogram


	
rdtools.plotting.soiling_rate_histogram(soiling_info, bins=None)

	Create histogram of soiling rates found in the SRR analysis.


Warning

The soiling module is currently experimental. The API, results,
and default behaviors may change in future releases (including MINOR
and PATCH releases) as the code matures.




	Parameters

	
	soiling_info (dict) -- soiling_info returned by soiling.SRRAnalysis.run() or
soiling.soiling_srr().


	bins (int) -- number of histogram bins to use






	Returns

	fig



	Return type

	matplotlib Figure













          

      

      

    

  

  
    
    rdtools.plotting.availability_summary_plots
    

    

    
 
  

    
      
          
            
  


rdtools.plotting.availability_summary_plots


	
rdtools.plotting.availability_summary_plots(power_system, power_subsystem, loss_total, energy_cumulative, energy_expected_rescaled, outage_info)

	Create a figure summarizing the availability analysis results.

Because all of the parameters to this function are products of an
AvailabilityAnalysis object, it is usually easier to use
availability.AvailabilityAnalysis.plot() instead of running
this function manually.


Warning

The availability module is currently experimental. The API, results,
and default behaviors may change in future releases (including MINOR
and PATCH releases) as the code matures.




	Parameters

	
	power_system (pd.Series) -- Timeseries total system power.


	power_subsystem (pd.DataFrame) -- Timeseries power data, one column per subsystem.


	loss_total (pd.Series) -- Timeseries system lost power.


	energy_cumulative (pd.Series) -- Timeseries system cumulative energy.


	energy_expected_rescaled (pd.Series) -- Timeseries expected energy, rescaled to match actual energy. This
reflects interval energy, not cumulative.


	outage_info (pd.DataFrame) -- A dataframe with information about system outages.






	Returns

	fig



	Return type

	matplotlib Figure






See also

rdtools.availability.AvailabilityAnalysis.plot()



Examples

>>> aa = AvailabilityAnalysis(...)
>>> aa.run()
>>> fig = rdtools.plotting.availability_summary_plots(aa.power_system,
...     aa.power_subsystem, aa.loss_total, aa.energy_cumulative,
...     aa.energy_expected_rescaled, aa.outage_info)
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RdTools Change Log


v2.0.1 (October 30, 2020)


Deprecations


	The deprecation of pvwatts_dc_power()
and normalize_with_pvwatts() has been reversed.
(GH #227 [https://github.com/NREL/rdtools/pull/227])







Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])


	Kevin Anderson (@kanderso-nrel [https://github.com/kanderso-nrel])









v2.0.0 (October 20, 2020)

Version 2.0.0 adds experimental soiling and availability modules, plotting capability, and includes updates to normalization work flow. This major release introduces some breaking changes to the API. Details below.


API Changes


	The calculations internal to normalize_with_pvwatts()
and normalize_with_sapm() have changed.
Generally, when working with raw power data it should be converted to
right-labeled energy with energy_from_power()
before being used with these normalization functions (GH #105 [https://github.com/NREL/rdtools/pull/105], GH #108 [https://github.com/NREL/rdtools/pull/108]).


	Remove low_power_cutoff parameter in clip_filter() (GH #84 [https://github.com/NREL/rdtools/issues/84]).


	Many kwargs have changed name (but not input order) to bring nomenclature into
closer alignment with the DuraMAT pv-terms project [https://duramat.github.io/pv-terms]: (GH #185 [https://github.com/NREL/rdtools/pull/185])


	aggregation_insol() first kwarg is now energy_normalized.


	degradation_year_on_year(),
degradation_ols() and
degradation_classical_decomposition()
first kwarg is now energy_normalized.


	normalized_filter() input kwargs are now energy_normalized, energy_normalized_low and energy_normalized_high.


	poa_filter() input kwargs are now poa_global, poa_global_low and poa_global_high.


	tcell_filter() input kwargs are now temperature_cell, temperature_cell_low and temperature_cell_high.


	clip_filter() input kwargs are now power_ac and quantile.


	csi_filter() first two kwargs are now poa_global_measured, poa_global_clearsky.


	normalize_with_pvwatts() pvwatts_kws dictionary keys have been renamed.


	pvwatts_dc_power() input kwargs are now poa_global, power_dc_rated, temperature_cell, poa_global_ref, temperature_cell_ref, gamma_pdc.


	irradiance_rescale() second kwarg is now irrad_sim











Deprecations


	The functions pvwatts_dc_power(),
sapm_dc_power(),
normalize_with_pvwatts(), and
normalize_with_sapm() have been deprecated
in favor of normalize_with_expected_power().
(GH #215 [https://github.com/NREL/rdtools/pull/215])


	delta_index() and check_series_frequency() (GH #222 [https://github.com/NREL/rdtools/pull/222])







Enhancements


	Add new soiling module to implement the stochastic rate and
recovery method:


	Create new class SRRAnalysis and helper function
soiling_srr() (GH #112 [https://github.com/NREL/rdtools/pull/112], GH #168 [https://github.com/NREL/rdtools/pull/168], GH #169 [https://github.com/NREL/rdtools/pull/169],
GH #176 [https://github.com/NREL/rdtools/pull/176], GH #208 [https://github.com/NREL/rdtools/pull/208], GH #213 [https://github.com/NREL/rdtools/pull/213])


	Create functions monthly_soiling_rates() and
annual_soiling_ratios() (GH #193 [https://github.com/NREL/rdtools/pull/193], GH #207 [https://github.com/NREL/rdtools/pull/207])






	Create new module availability with the class
AvailabilityAnalysis for estimating
timeseries system availability (GH #131 [https://github.com/NREL/rdtools/pull/131])


	Add new function normalize_with_expected_power() (GH #173 [https://github.com/NREL/rdtools/pull/173]).


	Add new functions energy_from_power() and
interpolate() (GH #105 [https://github.com/NREL/rdtools/pull/105], GH #108 [https://github.com/NREL/rdtools/pull/108], GH #182 [https://github.com/NREL/rdtools/pull/182], GH #212 [https://github.com/NREL/rdtools/pull/212]).


	Add new function normalized_filter() (GH #139 [https://github.com/NREL/rdtools/pull/139])


	Add new plotting module for generating standard plots
(GH #138 [https://github.com/NREL/rdtools/pull/138], GH #131 [https://github.com/NREL/rdtools/pull/131])


	Add parameter convergence_threshold to
irradiance_rescale() (GH #152 [https://github.com/NREL/rdtools/pull/152]).







Bug fixes


	Allow max_iterations=0 in
irradiance_rescale() (GH #152 [https://github.com/NREL/rdtools/pull/152]).







Testing


	Add Python 3.7 and 3.8 to CI testing (GH #135 [https://github.com/NREL/rdtools/pull/135]).


	Add CI configuration based on the minimum dependency versions (GH #197 [https://github.com/NREL/rdtools/pull/197])







Documentation


	Create sphinx documentation and set up ReadTheDocs (GH #125 [https://github.com/NREL/rdtools/pull/125]).


	Add guides on running tests and building sphinx docs (GH #136 [https://github.com/NREL/rdtools/pull/136]).


	Improve module-level docstrings (GH #137 [https://github.com/NREL/rdtools/pull/137]).


	Update landing page and add new "Inverter Downtime" documentation page
based on the availability notebook (GH #131 [https://github.com/NREL/rdtools/pull/131])







Requirements


	Drop support for Python 2.7, minimum supported version is now 3.6 (GH #135 [https://github.com/NREL/rdtools/pull/135]).


	Increase minimum pvlib version to 0.7.0 (GH #170 [https://github.com/NREL/rdtools/pull/170])


	Update requirements.txt and notebook_requirements.txt to avoid conflicting specifications. Taken together,
they represent the complete environment for the notebook example (GH #164 [https://github.com/NREL/rdtools/pull/164]).


	Add minimum matplotlib requirement of 3.0.0 (released September 18, 2018) (GH #197 [https://github.com/NREL/rdtools/pull/197])


	Increase minimum numpy version from 1.12 (released January 15, 2017) to
1.15 (released July 23, 2018) (GH #197 [https://github.com/NREL/rdtools/pull/197])







Example Updates


	Seed numpy.random to ensure repeatable results (GH #164 [https://github.com/NREL/rdtools/pull/164]).


	Use normalized_filter() instead of manually
filtering the normalized energy timeseries.  Also updated the associated mask
variable names (GH #139 [https://github.com/NREL/rdtools/pull/139]).


	Add soiling section to the original example notebook.


	Add a new example notebook that analyzes data from a PV system located at
NREL's South Table Mountain campus (PVDAQ system #4) (GH #171 [https://github.com/NREL/rdtools/pull/171]).


	Explicitly register pandas datetime converters which were deprecated [https://github.com/pandas-dev/pandas/issues/18301].


	Add new system_availability_example.ipynb notebook (GH #131 [https://github.com/NREL/rdtools/pull/131])







Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])


	Kevin Anderson (@kanderso-nrel [https://github.com/kanderso-nrel])


	Chris Deline (@cdeline [https://github.com/cdeline])


	Will Vining (@wfvining [https://github.com/wfvining])









v1.2.3 (April 12, 2020)


	Updates dependencies


	Versioneer bug fix


	Licence update





Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])









v1.2.2 (October 12, 2018)

Patch that adds author email to enable pypi deployment


Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])









v1.2.1 (October 12, 2018)

This update includes automated testing and deployment to support development
along with some bug fixes to the library itself, a documented environment for
the example notebook, and new example results to reflect changes in the example
dataset. It addresses GH #49 [https://github.com/NREL/rdtools/issues/49], GH #76 [https://github.com/NREL/rdtools/issues/76], GH #78 [https://github.com/NREL/rdtools/issues/78], GH #79 [https://github.com/NREL/rdtools/issues/79],
GH #80 [https://github.com/NREL/rdtools/issues/80], GH #85 [https://github.com/NREL/rdtools/issues/85], GH #86 [https://github.com/NREL/rdtools/issues/86], and GH #92 [https://github.com/NREL/rdtools/issues/92].


Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])


	Adam Shinn (@abshinn [https://github.com/abshinn])


	Chris Deline (@cdeline [https://github.com/cdeline])


	nb137 (@nb137 [https://github.com/nb137])









v1.2.0 (March 30, 2018)

This incorporates changes including:


	Enables users to control confidence intervals reported in degradation calculations (GH #59 [https://github.com/NREL/rdtools/issues/59])


	Adds python 3 support (GH #56 [https://github.com/NREL/rdtools/issues/56] and GH #67 [https://github.com/NREL/rdtools/issues/67])


	Fixes bugs (GH #61 [https://github.com/NREL/rdtools/issues/61] GH #57 [https://github.com/NREL/rdtools/issues/57])


	Improvements/typo fixes to docstrings


	Fixes error in check for two years of data in degradation_year_on_year


	Improves the calculations underlying irradiance_rescale





Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])


	Ambarish Nag (@ambarishnag [https://github.com/ambarishnag])


	Gregory Kimball (@GregoryKimball [https://github.com/GregoryKimball])


	Chris Deline (@cdeline [https://github.com/cdeline])


	Mark Mikofski (@mikofski [https://github.com/mikofski])









v1.1.3 (December 6, 2017)

This patch includes the following changes:


	Update the notebook for improved plotting with Pandas v.0.21.0


	Fix installation bug related to package data





Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])


	Chris Deline (@cdeline [https://github.com/cdeline])









v1.1.2 (November 6, 2017)

This patch includes the following changes:


	Fix bugs in installation


	Update requirements


	Notebook plots made compatible with pandas v.0.21.0





Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])









v1.1.1 (November 1, 2017)

This patch:


	Improves documentation


	Fixes installation requirements





Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])


	Adam Shinn (@abshinn [https://github.com/abshinn])


	Chris Deline (@cdeline [https://github.com/cdeline])









v1.1.0 (September 30, 2017)

This update includes the addition of filters, functions to support a clear-sky
workflow, and updates to the example notebook.


Contributors


	Mike Deceglie (@mdeceglie [https://github.com/mdeceglie])


	Adam Shinn (@abshinn [https://github.com/abshinn])


	Ambarish Nag (@ambarishnag [https://github.com/ambarishnag])


	Gregory Kimball (@GregoryKimball [https://github.com/GregoryKimball])


	Chris Deline (@cdeline [https://github.com/cdeline])


	Jiyang Yan (@yjy1663 [https://github.com/yjy1663])
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Developer Notes

This page documents some of the workflows specific to RdTools development.


Installing RdTools source code

To make changes to RdTools, run the test suite, or build the documentation
locally, you'll need to have a local copy of the git repository.
Installing RdTools using pip will install a condensed version that
doesn't include the full source code.  To get the full source code,
you'll need to clone the RdTools source repository from Github with e.g.

git clone https://github.com/NREL/rdtools.git





from the command line, or using a GUI git client like Github Desktop.  This
will clone the entire git repository onto your computer.




Installing RdTools dependencies

The packages necessary to run RdTools itself can be installed with pip.
You can install the dependencies along with RdTools itself from
PyPI [https://pypi.org/project/rdtools/]:

pip install rdtools





This will install the latest official release of RdTools.  If you want to work
with a development version and you have cloned the Github repository to your
computer, you can also install RdTools and dependencies by navigating to the
repository root, switching to the branch you're interested in, for instance:

git checkout development





and running:

pip install .





This will install based on whatever RdTools branch you have checked out.  You
can check what version is currently installed by inspecting
rdtools.__version__:

>>> rdtools.__version__
'1.2.0+188.g5a96bb2'





The hex string at the end represents the hash of the git commit for your
installed version.


Installing optional dependencies

RdTools has extra dependencies for running its test suite and building its
documentation.  These packages aren't necessary for running RdTools itself and
are only needed if you want to contribute source code to RdTools.


Note

These will install RdTools along with other packages necessary to build its
documentation and run its test suite.  We recommend doing this in a virtual
environment to keep package installations between projects separate!



Optional dependencies can be installed with the special
syntax [https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies]:

pip install rdtools[test]  # test suite dependencies
pip install rdtools[doc]   # documentation dependecies





Or, if your local repository has an updated dependencies list:

pip install .[test]  # test suite dependencies
pip install .[doc]   # documentation dependecies










Running the test suite

RdTools uses pytest [https://docs.pytest.org/en/latest/] to run its test
suite.  If you haven't already, install the testing depencencies
(Installing optional dependencies).

To run the entire test suite, navigate to the git repo folder and run

pytest





For convenience, pytest lets you run tests for a single module if you don't
want to wait around for the entire suite to finish:

pytest rdtools/test/soiling_test.py





And even a single test function:

pytest rdtools/test/soiling_test.py::test_soiling_srr





You can also evaluate code coverage when running the test suite using the
coverage [https://coverage.readthedocs.io] package:

coverage run -m pytest
coverage report





The first line runs the test suite and keeps track of exactly what lines of
code were run during test execution.  The second line then prints out a
summary report showing how much much of each source file was
executed in the test suite.  If a percentage is below 100, that means a
function isn't tested or a branch inside a function isn't tested.  To get
specific details, you can run coverage html to generate a detailed HTML
report at htmlcov/index.html to view in a browser.




Building documentation locally

RdTools uses Sphinx [https://www.sphinx-doc.org/] to build its documentation.
If you haven't already, install the documentation depencencies
(Installing optional dependencies).

Once the required packages are installed, change your console's working
directory to rdtools/docs/sphinx and run

make html





Note that on Windows, you don't actually need the make utility installed for
this to work because there is a make.bat in this directory.  Building the
docs should result in output like this:

(venv)$ make html
Running Sphinx v1.8.5
making output directory...
[autosummary] generating autosummary for: api.rst, example.nblink, index.rst, readme_link.rst
[autosummary] generating autosummary for: C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.aggregation.aggregation_insol.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.aggregation.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.clearsky_temperature.get_clearsky_tamb.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.clearsky_temperature.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.degradation.degradation_classical_decomposition.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.degradation.degradation_ols.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.degradation.degradation_year_on_year.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.degradation.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.filtering.clip_filter.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.filtering.csi_filter.rst, ..., C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.normalize_with_pvwatts.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.normalize_with_sapm.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.pvwatts_dc_power.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.sapm_dc_power.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.t_step_nanoseconds.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.normalization.trapz_aggregate.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.soiling.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.soiling.soiling_srr.rst, C:\Users\KANDERSO\projects\rdtools\docs\sphinx\source\generated\rdtools.soiling.srr_analysis.rst
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 4 source files that are out of date
updating environment: 33 added, 0 changed, 0 removed
reading sources... [100%] readme_link
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] readme_link
generating indices... genindex py-modindex
writing additional pages... search
copying images... [100%] ../build/doctrees/nbsphinx/example_33_2.png
copying static files... done
copying extra files... done
dumping search index in English (code: en) ... done
dumping object inventory... done
build succeeded.

The HTML pages are in build\html.





If you get an error like Pandoc wasn't found, you can install it with conda:

conda install -c conda-forge pandoc





The built documentation should be in rdtools/docs/sphinx/build and opening
index.html with a web browser will display it.




Contributing

Community participation is welcome!  New contributions should be based on the
development branch as the master branch is used only for releases.

RdTools follows the PEP 8 [https://www.python.org/dev/peps/pep-0008/] style guide.
We recommend setting up your text editor to automatically highlight style
violations because it's easy to miss some isses (trailing whitespace, etc) otherwise.

Additionally, our documentation is built in part from docstrings in the source
code.  These docstrings must be in NumpyDoc format [https://numpydoc.readthedocs.io/en/latest/format.html]
to be rendered correctly in the documentation.

Finally, all code should be tested.  Some older tests in RdTools use the unittest
module, but new tests should all use pytest.
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